Aktuelle am IfN ausgeschriebene studentische Arbeiten finden sind in der folgenden Tabelle. Weitere Informationen zu den studentischen Arbeiten sind auf der jeweiligen Seite des Betreuers zu finden.
Titel der studentischen Arbeit | Betreuer | Art der Arbeit |
---|---|---|
Characterization of the indoor low-THz time-variant channels | Varvara Elesina | Masterarbeit |
DNN-gestützte akustische Stereokanal-Echokompensation | Ernst Seidel | Masterarbeit |
Effizientes Training von LLMs mittels Verrauschter Daten | Julian Miguel Kabus | Masterarbeit |
Einfluss von reflektiven intelligenten Oberflächen auf den Funkkanal bei 300 GHz | Lorenz Löser | Masterarbeit |
End-to-End audiovisuelle Spracherkennung | Zhengyang Li | Masterarbeit |
Entwicklung eines Algorithmus für intelligente THz-X-Haul-Netze durch Nutzung von AI/ML für dynamische Wettervorhersagen | Bo Kum Jung | Masterarbeit |
Entwicklung eines vereinfachten Tools für den Datenzugang und die Analyse von Wetterdaten der NOAA | Bo Kum Jung | Bachelorarbeit |
Entwicklung von Algorithmen für den strategischen Einsatz rekonfigurierbarer intelligenter Oberflächen für Multi-Link-THz-X-Haul-Verbindungen über Beam Splitting | Bo Kum Jung | Masterarbeit |
High-Fidelity Speech Coding with Neural Networks | Renzheng Shi | Andreas Baer | Masterarbeit |
Implementierung und Bewertung von geometriebasierten stochastischen Kanalmodellen unter Verwendung von QuaDRiGa. | Ahmad Hamada | Masterarbeit |
Investigating the limitations of the WSSUS assumption in the case of low-THz indoor channels | Varvara Elesina | Masterarbeit |
Niedrig-latente tiefe adaptive Filter | Ernst Seidel | Masterarbeit |
Nutzergesteuerte maschinengelernte akustische Echokompensation | Ernst Seidel | Masterarbeit |
Untersuchung von Methoden zur Bekämpfung von Intersymbolinterferenz | Christoph Herold | Masterarbeit |
Untersuchung von OFDM in der sub-THz Kommunikation | Steffen Kroos | Bachelorarbeit, Masterarbeit |
Im Video weiter unten zeigen wir das ein Beispiel einer unserer studentischen Abschlussarbeiten, die in Zusammenarbeit mit dem Lions Racing Team der TU Braunschweig durchgeführt wurde.
Bei der Formula Student wird es in Zukunft nicht nur Herausforderungen geben, die von einem Fahrer oder einer Fahrerin bestritten werden müssen, sondern auch solche, die autonom bewältigt werden müssen. Dafür ist es nötig, das Fahrzeug entsprechend zu "trainieren". Die Hütchen, die den Streckenverlauf markieren, müssen genau erkannt werden: blaue und gelbe Hütchen markieren die rechte und linke Streckenbegrenzung, kleine orangene Hütchen die Bremszonen und Große die Start- und Ziellinie. Für die Identifizierung der Hütchen wird ein neuronales Faltungsnetzwerk verwendet. DeS Netzwerk wurde auf ImageNet (ein Datensatz zur Bildklassifikation) vortrainiert und anschließend auf einem 24.000 Bilder umfassenden Datensatz von Verkehrshütchen angepasst. Ohne Optimierungen erreicht das Netzwerk in etwa eine Frequenz von 40Hz. In dem Video ist das trainierte Netzwerk zu sehen, wie es die Streckenmarkierungen bei ungefähr 40 Bildern pro Sekunde erkennt.