Nebenläufigkeitstheorie SS24

News

25. März  - Die Informationen auf dieser Seite sind noch vorläufig.

Organisation

  • Die Vorlesung wird von Prof. Dr. Roland Meyer gehalten.
  • Vorlesung: Montag und Dienstag 16:45-18:15 Uhr (IZ 358).
  • Übung: Mittwoch 13:15-14:45 Uhr (IZ 358).
  • Die Vorlesung startet am 08.04.2024.
  • Falls Sie die Vorlesung in den Bachelor einbringen möchten, klären Sie dies bitte mit dem Prüfungsamt ab.

Modul

Es handelt sich um eine (4+2) Veranstaltung. Um das Modul erfolgreich abzuschließen, sind zwei Leistungen zu erbringen:

  • Prüfungsleistung: Zu erbringen durch Bestehen einer mündlichen Abschlussprüfung zu Beginn des vorlesungsfreien Zeitraums. Das genaue Prüfungsdatum wird zeitnah bekannt gegeben.
  • Studienleistung: Zu erbringen durch das erfolgreiche Bearbeiten von mindestens 50% der Übungsaufgaben.

Übungsblätter

Die Übungsblätter werden während des Semesters hier zur Verfügung gestellt.

Literature

  • Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming, Revised Reprint (1st. ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA. ISBN: 978-0-12-397337-5

    Contains interesting information about the theory and practice of parallel programming.

  • Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An Introduction. MIT Press. ISBN: 978-0-262-23169-5

    Our presentation of programming languages is based on this. 

  • Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation: Decision Procedures with Applications to Verification. Springer. ISBN: 978-3-540-74112-1

    Our presentation of verification conditions is based on this text.

  • Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and practical non-blocking and blocking concurrent queue algorithms. In PODC. ACM. DOI: 10.1145/248052.248106
  • Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004. Formal Verification of a Practical Lock-Free Queue Algorithm. In FORTE. LNCS vol. 3235. Springer. DOI: 10.1007/978-3-540-30232-2_7.
  • John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE. 55-74.

    Our presentation of separation logic is based on this.

  • Samin S. Ishtiaq, Peter W. O'Hearn. 2001. BI as an Assertion Language for Mutable Data Structures. In POPL. ACM. 14-26.

    Here you find the axioms for heap-manipulating commands + the statement of completeness as weakest preconditions. 

  • Peter W. O'Hearn, John C. Reynolds, Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In CSL. Springer. 1-19.

    The ''Small Axioms''.

  • Hongseok Yang and Peter W. O'Hearn. 2002. A Semantic Basis for Local Reasoning. In FoSSaCS. Springer. 402-416.

    Soundness, Completeness, and Discussion of the Frame-Rule. Contains the semantic lemma about our programming language.

  • Hongseok Yang. 2001. Local Reasoning for Stateful Programs. PhD Thesis University of Illinois at Urbana−Champaign. 

    Completeness of the Frame-Rule and foundations of separation logic.

  • Cristiano Calcagno, Dino Distefano, Peter W. O'Hearn, Hongseok Yang. 2009. Compositional shape analysis by means of bi-abduction. In POPL. 289-300.

    Our presentation of Infer is based on this paper. 

  • Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. In MFPS. ENTCS 276: 335-351.

    Our presentation of concurrent separation logic is based on this paper. 

  • Peter W. O'Hearn. 2007. Resources, concurrency, and local reasoning. TCS 375(1-3): 271-307. 

    On concurrent separation logic.

  • Viktor Vafeiadis. 2008. Modular fine-grained concurrency verification. PhD Thesis University of Cambridge.

    Our presentation of RGSep is taken from this thesis. It also contains the lock-coupling list.

  • Viktor Vafeiadis, Matthew J. Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR. 256-271. 

    The RGSep paper.

  • Ahmed Bouajjani, Roland Meyer, Eike Möhlmann. 2011. Deciding Robustness against Total Store Ordering. In ICALP. 428-440. 

    The locality principle.

  • Ahmed Bouajjani, Egor Derevenetc, Roland Meyer. 2013. Checking and Enforcing Robustness against TSO. In ESOP. 533-553. 

    From robustness against TSO to reachability under SC.