PRO-MUD

Partikelaufgelöste Simulationen der Dynamik von kohäsivem Sediment

Projektinformationen

Leitung: Dr.-Ing. Bernhard Vowinckel

Projektdauer: 6 Jahre, ab März 2020

gefördert von der DFG

Fördervolumen: 1.660.000 Euro

 

Logo: Emmy Noether-Programm

Beschreibung des Projekts

Die Gruppe PRO-MUD am Leichtweiß-Institut für Wasserbau der Technischen Universität Braunschweig führt partikelaufgelöste Simulationen des Transports von Sediment in Oberflächengewässern und Küstenbereichen durch. Die in diesen Bereichen vorherrschenden Sedimente sind feinkörnig und kohäsiv und werden gemeinhin als Ton und Schluff bezeichnet. Die Dynamik von kohäsivem Sediment wird durch das Zusammenspiel von gravitativen, elektrostatischen und hydrodynamischen Kräften bestimmt, was hydrodynamische Prozesse gegenüber kohäsionslosen Sedimenten (z.B. Sand und Kies) substantiell verändert. Der Fokus wird dabei auf der Flokkulierung auf Grund von van-der-Waals-Kräften, dem Absetzverhalten, sowie der Erosion in offenen Gerinnen liegen. Dadurch wird ein besseres Verständnis für die Vorhersage der Ausbreitungen von Nähr- und Schadstoffen, die sich an diese Sedimente binden, erzeugt. Die gewonnenen Erkenntnisse sind relevant für die Erforschung von aquatischen Ökosystemen, die Modellierung des globalen Kohlenstoffkreislaufs, die Bindung von CO2 durch feinkörnige Sedimente und die Erkundung von Kohlenwasserstofffeldern.

Mitarbeiter

Alexander Metelkin, M. Sc.
Fabian Kleischmann, M. Sc.
Dr.-Ing. Bernhard Vowinckel
Alireza Khodabakhshi, M.Sc.

Publikationen

E. Krahl, B. Vowinckel, L. Ye, T.-J. Hsu  & A.J. Manning  (2022) Impact of the Salt Concentration and Biophysical Cohesion on the Settling Behavior of Bentonites. Frontiers Earth Science, 10:886006. doi: 10.3389/feart.2022.886006

Y. Yao, E. Biegert, B. Vowinckel, T. Köllner, E. Meiburg, S. Balachandar, C. S. Criddle & O.B. Fringer (2022). Particle‐resolved simulations of four‐way coupled, polydispersed, particle‐laden flows. International Journal for Numerical Methods in Fluids.  2022; 1-31. doi: 10.1002/fld.5128

R. Zhu, Z. He, K. Zhao, B. Vowinckel, & E. Meiburg (2022). Grain-resolving simulations of submerged cohesive granular collapse. Journal of Fluid Mechanics, 942, A49. doi:10.1017/jfm.2022.404

B. Vowinckel, K. Zhao, L. Ye, A.J. Manning, T. Hsu, E. Meiburg, B. Bai (2022). Physics of Cohesive Sediment Flocculation and Transport: State-of-the-Art Experimental and Numerical Techniques. In (Ed.), Sediment Transport - Recent Advances [Working Title]. IntechOpen. doi.org/10.5772/intechopen.104094

C. Rettinger, S. Eibl, U. Rüde, B.  Vowinckel (2022). Rheology of mobile sediment beds in laminar shear flow: Effects of creep and polydispersity. Journal of Fluid Mechanics, 932, A1 (PDF verfügbar).

B. Vowinckel, E. Biegert, E. Meiburg, P. Aussillous, É. Guazzelli. Rheology of mobile sediment beds sheared by viscous, pressure-driven flows. Journal of Fluid Mechanics, 921, A20, 2021 (PDF verfügbar).

K. Zhao, F. Pomes, B. Vowinckel, T.-J. Hsu, B. Bai, E. Meiburg. Flocculation of suspended cohesive particles in homogeneous isotropic turbulence. Journal of Fluid Mechanics, 921, A17, 2021 (PDF verfügbar).

Vowinckel, B. Incorporating grain-scale processes in macroscopic sediment transport models. Acta Mech (2021). https://doi.org/10.1007/s00707-021-02951-4

Zhao, K., Vowinckel, B., Hsu, T. J., Köllner, T., Bai, B., & Meiburg, E. (2020). An efficient cellular flow model for cohesive particle flocculation in turbulence. Journal of Fluid Mechanics, 889, R3 (PDF verfügbar).

Vowinckel, B., Biegert, E., Luzzatto-Fegiz, P., & Meiburg, E. (2019). Consolidation of freshly deposited cohesive and noncohesive sediment: Particle-resolved simulations. Physical Review Fluids, 4(7), 074305 (PDF verfübar).

Vowinckel, B., Withers, J., Luzzatto-Fegiz, P., & Meiburg, E. (2019). Settling of cohesive sediment: particle-resolved simulations. Journal of Fluid Mechanics, 858, 5-44 (PDF verfügbar).

Biegert, E., Vowinckel, B., & Meiburg, E. (2017). A collision model for grain-resolving simulations of flows over dense, mobile, polydisperse granular sediment beds. Journal of Computational Physics, 340, 105-127 (PDF verfügbar).

Konferenzbeiträge

  • F. Kleischmann, P. Luzzatto-Fegiz, E. Meiburg and B. Vowinckel. Microgravitational particle interaction in oscillatory flow. USNC/TAM 2022, Austin, USA, 2022
  • A. Metelkin and B. Vowinckel. A direct numerical simulation approach to model the dynamics of porous aggregates. ProcessNET Jahrestreffen 2022, Leipzig, Germany, 2022
  • F. Kleischmann, P. Luzzatto-Fegiz, E. Meiburg and B. Vowinckel.  Long term flocculation of clay in the absence of gravity. AGU Fall Meeting 2021, 2021
  • A. Metelkin and B. Vowinckel.  A numerical method to simulate the dynamics of porous particles. AGU Fall Meeting 2021, 2021
  • T.-J. Hsu, J. Penaloza-Giraldo, L. Yue, A.J. Manning, E. Meiburg and B. Vowinckel.  Toward modeling flocculation in turbulence-resolving simulations for cohesive sediment transport. AGU Fall Meeting 2021, 2021
  • J. Penaloza-Giraldo, T.-J. Hsu,  A.J. Manning, E. Meiburg and B. Vowinckel.  TAnalysis of a floc size class-based model reveals the importance of floc yield strength. AGU Fall Meeting 2021, 2021
  • B. Vowinckel, E. Biegert, E. Meiburg, P. Aussillous, E. Guazzelli.  Rheology of mobile sediment beds sheared by viscous, pressure-driven flows. Bulletin of the American Physical Society, 2021
  • R. Zhu, K. Zhao, B. Vowinckel, Z. He, and E. Meiburg.  Grain-resolving simulations of submerged cohesive granular collapse. Bulletin of the American Physical Society, 2021
  • A. Metelkin and B. Vowinckel.  A particle-resolved simulation approach to model the dynamics of cohesive porous sediments. Bulletin of the American Physical Society, 2021
  • F. Kleischmann, P. Luzzatto-Fegiz, E. Meiburg and B. Vowinckel.  Microgravitational Particle Interaction in Monochromatic High-Frequency Oscillatory Flow. Bulletin of the American Physical Society, 2021
  • B. Vowinckel,  P. Luzzatto-Fegiz, N. Rommelfanger, F. Kleischmann, and E. Meiburg. Long term flocculation of clay in the absence of gravity. International Conference on Cohesive Sediment Transport, Delft, The Netherlands, 2021.
  • B. Vowinckel, P. Luzzatto-Fegiz, F. Kleischmann, and E. Meiburg. Long term flocculation of clay in microgravity under g-jitter. EUROMECH Colloquium 609: Granular Patterns in Oscillatory Flows, Genova, Italy, 2021.
  • C. Rettinger, S. Eibl, U. Rüde, and B. Vowinckel. Numerical study of sheared mobile polydisperse sediment beds with a coupled lattice Boltzmann - discrete element method. EGU General Assembly 2021, Vienna, Austria, 2021.
  • F. Kleischmann, P. Luzzatto-Fegiz, N. Rommelfanger, E. Meiburg, and B. Vowinckel. Particle-Resolved Direct Numerical Simulations of Clay Particles in the Absence of Gravity. EGU General Assembly 2021, Vienna, Austria, 2021.
  • A. Metelkin and B. Vowinckel. A numerical method for simulations of cohesive, porous sediments. EGU General Assembly 2021, Vienna, Austria, 2021.
  • J. Penaloza-Giraldo, L. Yue, L. Ye, T.-J. Hsu, A. J. Manning, E.H. Meiburg, B. Vowinckel. The Effect of Floc Strength in a Size Class-Based Flocculation Model. AGU Fall Meeting, 2020.
  • K. Zhao, F. Pomes, B. Vowinckel, T.-J. Hsu, B. Bai, E. Meiburg. Flocculation of suspended cohesive particles in homogeneous isotropic turbulence. Bulletin of the American Physical Society, 73, 2020.
  • N. Rommelfanger, B. Vowinckel, Z. Wang, R. Dohrmann, E. Meiburg, P. Luzzatto-Fegiz. A simple theory and experiments for onset of flocculation in kaolin clay suspensions. River Flow 2020, Delft, Netherlands.
  • K. Zhao, B. Vowinckel, T.-J. Hsu, T. Köllner, B. Bai, E. Meiburg. An efficient cellular flow model for cohesive particle flocculation in turbulence. EGU General Assembly 2020, Vienna, Austria, 2020.