(in Kooperation mit der PTB Braunschweig und DFG Forschungsgruppe FOR 5242)
2D-Materialien wie Graphen, „Beyond-Graphen“ (Übergangsmetall-Chalkogenide, hBN, Gallenene, Silicene, Phosphene usw.) und insbesondere Materialien, die durch die traditionelle Synthese schwer als zweidimensionale Schichten darstellbar sind (wie z.B. graphenähnliches Zinkoxid (g-ZnO), GaN etc.) sind eine der wichtigsten Forschungsrichtungen in der Materialwissenschaft und Ingenieurtechnik. Ihre einzigartigen Eigenschaften haben das Potenzial, elektronische Bauelemente deutlich zu verbessern und zu erweitern, können aber auch zu neuen Anwendungsbereichen führen. Die neuen Herstellungsansätze führen zu einer neuen Route für zweidimensionales Kristallwachstum und könnten auch zur Herstellung von selbstorganisierten Stacks von 2D-Materialien als neuartige Property-on-Demand-Heterostrukturen und somit zu einem Durchbruch für zukünftige Bauelemente und Nanotechnologien führen.
Highlight ist die selbstorganisierte Herstellung von Gallenene "in Confinement" - zwischen Graphene und SiC Wafer - via Graphene Interkalation unter Raumtemperatur und atmospherischen Druck (Luft):
Weitere Highlights: auch andere Materialien, wie z.B. InGa un sogar In in Confinement unter Raumtemperatur/Luft hergestellt, Publikationen sind in Vorbereitung.
New cost-effective manufacturing and processing methods (in cooperation with PTB Braunschweig)
The key issue that will define the successful implementation of 2D materials in mass production is development of their cost-effective large area deposition and processing technologies. Some of the areas of our research on this topic are solid-melt exfoliation, solid-melt intercalation-exfoliation, sublimation sandwich approach, van der Waals epitaxy, SAMs conversion, pen-litho.
Elemental 2D-Materials and their Derivatives (in cooperation with PTB Braunschweig and PTB Berlin)
Among 2D materials “beyond graphene” elemental atomic layers of the materials group III to group VI (group 13 to group 16), so called Xenes (silicene, phosphorene, stanene etc.) are gaining rapidly growing attention. Existence of B, Al, Ga, In, C (beyond graphene), Si, Ge, Sn, Pb, P, As, Sb, Bi, Se, Te as 2D materials is either experimentally proved or theoretically predicted. Behavior of these Xenes covers the spectrum from metal to semiconducting properties providing wide range of potential applications in the areas of photonics, electronics, energy conversion. Among these materials silicene and phosphorene are studied during several years and comparatively well known. At present fabrication approaches as well as properties investigations of gallenene are at the initial stages of research. It is already proposed that gallenene would be of special interest for energy conversion applications. Recently it was shown by several groups, that hydrogenated gallenene, called gallenane, is promising material as 2D flexible and stable metal for nanotechnological applications and, moreover, it is extremely promising candidate for room temperature spintronics. Also other derivatives of gallenene obtained by its transformation to oxides, nitrides etc. are of great interest. Further applications fields will be clear after the properties of gallenene and related derivatives will be studied in detail. Our research was initially focused on gallenene+derivatives and now it involves further listed above elements.
Some Highlights:
Large scale (limited by the wafer dimensions) selbstorganized formation of gallenene sheet under graphene through Liquid Metal Intercalation Technique (Li.M.I.T.) at ambient conditions: