[23] S. Andres, N. Gantert, D. Schmid, P. Sousi.
Biased random walk on dynamical percolation.
Ann. Prob. 52, no.6, 2051-2078 (2024)
Arxiv-version
[22] S. Andres, A. Prévost.
First passage percolation with long-range correlations and applications to random Schrödinger operators.
Ann. Appl. Probab. 34, no.2, 1846–1895 (2024)
[21] S. Andres, D. Croydon, T. Kumagai.
Heat kernel fluctuations and quantitative homogenization for the one-dimensional Bouchaud trap model.
Stochastic Process. Appl. 172, Paper No. 104336, 20 pp. (2024)
Arxiv version
[20] S. Andres, D. Croydon, T. Kumagai.
Heat kernel fluctuations for stochastic processes on fractals and random media.
From classical analysis to analysis on fractals. Vol. 1. A tribute to Robert Strichartz, 265-281.
Appl. Numer. Harmon. Anal., Birkhäuser/Springer, 2023
Arxiv-version
[19] S. Andres, N. Halberstam.
Lower Gaussian heat kernel bounds for the Random Conductance Model in a degenerate ergodic environment.
Stochastic Process. Appl. 139, 212-228 (2021).
Arxiv-version
[18] S. Andres, A. Chiarini, M. Slowik.
Quenched local limit theorem for random walks among time-dependent ergodic degenerate weights.
Probab. Theory Related Fields 179, no. 3-4, 1145-1181 (2021).
Arxiv-version
[17] S. Andres, P. A. Taylor.
Local Limit Theorems for the Random Conductance Model and Applications to the Ginzburg-Landau ∇φ Interface Model.
J. Stat. Phys. 182, no. 2, 35 (2021).
Arxiv-version
[16] S. Andres, J.-D. Deuschel, M. Slowik.
Green kernel asymptotics for two-dimensional random walks under random conductances.
Electron. Commun. Probab. 25, no. 58, 14 pp. (2020).
Arxiv-version.
[15] S. Andres, S. Neukamm.
Berry-Esseen Theorem and Quantitative homogenization for the Random Conductance Model with degenerate Conductances.
Stoch. Partial Differ. Equ. Anal. Comput. 7, no. 2, 240-296 (2019).
Arxiv-version.
[14] S. Andres, J.-D. Deuschel, M. Slowik.
Heat kernel estimates and intrinsic metric for random walks with general speed measure under degenerate conductances.
Electron. Commun. Probab. 24, no. 5, 17 pp. (2019).
Arxiv-version.
[13] S. Andres, L. Hartung.
Diffusion processes on Branching Brownian motion.
ALEA Lat. Am. J. Probab. Math. Stat. 15, 1377-1400 (2018).
Arxiv-version.
[12] S. Andres, A. Chiarini, J.-D. Deuschel, M. Slowik.
Quenched invariance principle for random walks with time-dependent ergodic degenerate weights.
Ann. Probab. 46, no. 1, 302-336 (2018).
Arxiv-version.
[11] S. Andres, N. Kajino.
Continuity of the heat kernel and spectral dimension for Liouville Brownian motion.
Probab. Theory Related Fields 166, no. 3-4, 713-752 (2016).
Arxiv-version.
[10] S. Andres, J.-D. Deuschel, M. Slowik.
Heat kernel estimates for random walks with degenerate weights.
Electron. J. Probab. 21, no. 33, 1-21 (2016).
Arxiv-version.
[9] S. Andres, J.-D. Deuschel, M. Slowik.
Harnack inequalities on weighted graphs and some applications to the random conductance model.
Probab. Theory Related Fields 164, no. 3-4, 931-977 (2016).
Arxiv-version.
[8] S. Andres, J.-D. Deuschel, M. Slowik.
Invariance Principle for the Random Conductance Model in a degenerate ergodic Environment.
Ann. Probab. 43, no. 4, 1866-1891 (2015).
Arxiv-version.
[7] S. Andres, M.T. Barlow.
Energy inequalities for cutoff functions and some applications.
J. reine angew. Math. 699, 183-215 (2015).
Arxiv-version.
[6] S. Andres.
Invariance Principle for the Random Conductance Model with dynamic bounded Conductances.
Ann. Inst. Henri Poincaré Probab. Stat. 50, no. 2, 352-374 (2014).
Arxiv-version.
[5] S. Andres, M.T. Barlow, J.-D. Deuschel, B.M. Hambly.
Invariance Principle for the Random Conductance Model.
Probab. Theory Related Fields 156, no. 3-4, 535-580 (2013).
[4] S. Andres, M.-K. von Renesse.
Uniqueness and Regularity Properties for a System of Interacting Bessel Processes via the Muckenhoupt Condition.
Trans. Amer. Math. Soc., Vol. 364, No. 3, 1413-1426 (2012).
Arxiv-version.
[3] S. Andres.
Pathwise Differentiability for SDEs in a Smooth Domain with Reflection.
Electron. J. Probab., Vol. 16, 845-879 (2011).
[2] S. Andres, M.-K. von Renesse.
Particle Approximation of the Wasserstein Diffusion.
Journal of Functional Analysis, Vol. 258, Issue 11, 3879-3905 (2010).
Arxiv-version.
[1] S. Andres.
Pathwise Differentiability for SDEs in a convex Polyhedron with oblique Reflection.
Ann. Inst. Henri Poincaré, Vol. 45, No. 1, 104-116 (2009).
Invarianzprinzip und lokaler Grenzwertsatz für das Random Conductance Model.
Habilitationsschrift, Bonn 2015.
Diffusion processes with reflection.
Ph.D. Dissertation, TU Berlin 2009, hardcopy published by Südwestdeutscher Verlag für Hochschulschriften available here .
Pathwise Differentiability for Stochastic Differential Equations with Reflection.
Diploma thesis, TU Berlin 2006.