Real-digital process chains for obtaining in-situ concrete components for further use as prefabricated components
03/2021 - 02/2023 | Funded by BMBF – Federal Ministry of Education and Research
In the Precast Concrete Components 2.0 project (PCC 2.0), new real-digital process chains are being developed to extract concrete components from existing buildings that are to be demolished, which can then be refurbished and reused as "precast concrete components" for new buildings (Fig. 1). While digital-real process chains of new buildings usually start with digital planning before they are realized on the construction site, a real-digital process chain starts with an existing building. The basis of this novel real-digital process is a digitization platform for acquisition, planning, management, logistics and manufacturing, which is being developed as a prototype. The real-digital process chain is then implemented in the construction of a life-size demonstrator in the form of a building section made up of refurbished PCC 2.0 elements. [link to the project page]
Integrated Additive Manufacturing Processes for Reinforced Shotcrete 3D Printing (SC3DP) Elements with Precise Surface Quality
01/2020 - 12/2023 | Funded by DFG – German Research within TRR 277 - A 04
Within this project of the TRR 277, basic research on various Shotcrete 3D Printing (SC3DP) strategies, materials, tools and methods will be conducted with regard to enhanced material and process control, reinforcement integration, surface quality and automation. To that end, different reinforcement materials in combination with suitable reinforcement manufacturing and integration concepts will be investigated based on force-flow optimised reinforcement alignment.
Besides, design strategies, material and process control will be investigated in detail. Furthermore, tools and strategies for precise control of the surface quality and geometric resolution of SC3DP elements are subject of research.
Finally, strategies, materials and tools elaborated within the project will be synergistically combined and validated at large scale. [link to the project page]
Integration of Individualized Prefabricated Fibre Reinforcement in Additive Manufacturing with Concrete
01/2020 - 12/2023 | Funded by: DFG – German Research Foundation within TRR 277 - A 05
This project investigates the implementation of fibre reinforcement in 3D printing with concrete, as by now this task remains largely unsolved, leading to limited, for example compression only applications of additive manufacturing. Our research aims for fully unlocking the inherent potentials of 3D printing, that is to foster material efficient, structurally optimized, and hence sustainable constructions. Automated fabrication processes for the integration of structural reinforcement for additively fabricated concrete elements are being developed. Focusing on innovative fibrous materials instead of conventional steel rebars opens up new challenges same as opportunities encouraging us to score unprecedented structural performance and explore unseen potentials in architectural expression at the same time. [link to the project page]
Wire and Arc Additive Manufacturing (WAAM) of complex individualized steel components
1/2020 - 12/2023 | Funded by: DFG – German Research Foundation within CRC / TRR 277 - A 07
This project deals with the design process of components for additive manufacturing (AM) by Wire and Arc Additive Manufacturing (WAAM). In construction, components are often individual parts and usually used in the building as a single part or in small quantities. With the implementation of AM processes, these components are usually free-form geometries that result from the fulfilment of a wide range of boundary conditions. This includes improvements in material utilization through topology or shape optimization, geometries suitable for production and architectural design requirements. Due to the frequently small number of identical components, the effort required to create the geometry must also be kept low, as otherwise the economic advantages of AM are outweighed by the effort required in the design process. [link to the project page]
Jointing Principles for Combination of Concrete Elements Produced by Different Additive Manufacturing
01/2020 - 12/2023 | Funded by: DFG – German Research Foundation within CRC / TRR 277 - C 05
Utilizing the additive manufacturing (AM), (particle-bed processes, extrusion and shotcrete), facilitates resource-efficient segmental concrete construction. In which joints' performances and their production methods play a crucial role, affecting analysing and assembling approaches. Three different types of connection in such a structure are feasible, including dry joints, adhesive joints and mortar joints. Due to various issues such as the necessity of formwork, scaffolding and curing, dry joints are broadly preferred. Utilizing particle-bed printing method or post-processing technics in other printing methods develops an automated construction approach, for producing printed-precast segmental constructions. Thus, this project, through experimental and numerical analyses, investigates the correlation between the joints' production methods and the joints' load-bearing capacities, regarding different AM materials. Accordingly, C05 gains fundamental experiences for further development and application of resource-efficient AM components in construction. [link to the project page]
The Challenge of Large Scale - Additive Manufacturing in Construction
01/2020 - 12/2023 | Funded by DFG – German Research Foundation within CRC / TRR 277 - C 06
The introduction of additive manufacturing (AM) in construction is expected to lead to fundamental changes along its entire value chain. While traditional construction processes are characterised by the fragmentation of construction knowledge, new digital tools allow the integration of all project participants already in early project phases. The prerequisite for this is a bi-directional flow of information into a central building information model (BIM). The aim of this project is to investigate the bi-directional relationship between production and planning at the scale levels of component fabrication (using computer vision and machine learning for fabrication improvement), component assembly on-site (using e.g. mixed reality) and on the industry scale. [link to the project page]
Injection Three-Dimensional Concrete Printing (I3DCP)
01/2020 - 12/2023 | Funded by Matthäi Stiftung
Today, the majority of research in 3D concrete printing focuses on one of the three methods: firstly, material extrusion; secondly, particle-bed binding; and thirdly, material jetting. Common to all these technologies is that the material is applied in horizontal layers. In this project, a novel 3D concrete printing technology is presented which challenges this principle: the so-called Injection 3D Concrete Printing (I3DCP) technology is based on the concept that a fluid material (M1) is robotically injected into a material (M2) with specific rheological properties, causing material M1 to maintain a stable position within material M2. Different to the layered deposition of horizontal strands, intricate concrete structures can be created through printing spatially free trajectories, that are unconstrained by gravitational forces during printing. [link to the project page]
Sustainable and cost-effective robotic formwork manufacturing for the concrete industry
09/2020 - 09/2023 | Funded by Eurostars/BMBF
Digital construction research team at Institute of Structural Design (ITE) (DE), construction robotics company Odico (DK), and concrete pre-manufacturing company Beton und Naturstein Babelsberg GmbH (BNB) (DE) will develop, test and evaluate a novel robotic manufacturing unit (Robocrete) that generates wax formworks (molds) for sustainable concrete building elements, automatically and waste-free. The project will develop a novel technology and test it at BNB’s facilities. The result will be a validated prototype ready for global scale-up. [link to the project page]
Robot-assisted, magnetic alignment of microsteel fibers in thinwalled UHPFRC components
01/2019- 12/2021 | Funded by DFG – German Research Foundation
The robot-assisted magnetic distribution and orientation of microsteel fibers in UHPFRC (Ultra-High Performance Fiber-Reinforced Concrete) will be used to produce more resource-efficient concrete components in the future. Current research focuses on the possibilities of digital and robot based component production on the one hand and the potential of fiber orientation to increase the material efficiency of UHPFRC on the other. [link to the project page]
Robotic fabrication of rammed earth elements
04/2019 - 03/2022 | Funded by Bundesinstitut für Bau-, Stadt-, und Raumforschung; Zukunft Bau
The research project „Robotic fabrication of rammed earth elements“ aims, to develop an applicable, robotic manufacturing process for rammed earth components. Rammed earth is an ancient building technique used since 8000 years. The technique is based upon layered compaction of earth in a formwork by using a manually driven wooden tamper. Today formwork technology is improved and pneumatic tampers replaced hand tampers. However, the process is still manual in nature, which leads to inefficiencies compared to other building materials and techniques. In contrast to concrete, where stability depends on a chemical reaction, rammed earth gains its fundamental stability merely from the compaction process. Therefore, a formwork is only needed, where compaction takes place immediately. In contrast to the traditional technique, the objective in this research project is the development of an actively moved formwork and a compaction tool that is mounted as an end effector to a robot. [link to the project page]
Innovative Non-Waste-Wachsschalungen für die Herstellung von hochpräzisen Maschinengestellen aus UHPC
2017-2019 | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
Ziel des beantragten Transfer-Forschungsprojektes ist es, die im DFG Forschungsprojekt „Non-Waste-Wachsschalungen“ (Vorprojekt) erfolgreich entwickelten Grundlagen der Wachsschalungstechnologie für die industrielle Anwendung ... [weiter]
Digital Building Fabrication Laboratory – DBFL Robotergesteuerte Fertigung von großformatigen Bauteilen und Elementen im Bauwesen
2017 | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
Das DBFL ist in seiner Konzeption und Ausführung einzigartig und stellt die Basis für zukünftige Forschungen im Bereich der digitalen Baufabrikation am Institut für Tragwerksentwurf (ITE) und der Technischen Universität Braunschweig dar. Ziel des DBFL ist es mit Hilfe robotergesteuerter ... [weiter]
Modulares und vollautomatisiertes Fertigungsverfahren für frei geformte Betonschalungen im Hochbau auf Basis von technischen Wachsen
2017-2018 | Gefördert durch BMWI im Rahmen ZIM
Während in der industriellen Fertigung die aktuellen Diskussionen um die zukünftigen Entwicklungen von den Themen „Industrie 4.0“, das heißt die Vernetzung der Produktionstechniken und -prozesse zu einer sogenannten „Smart Factory“, sowie der „Mensch-Roboter-Kooperation“ bestimmt werden, ist ... [weiter]
Entwicklung einer robotergestützten Spritztechnologie zur schalungslosen generativen Fertigung komplexer Betonbauteile
2016-2018 | Gefördert durch die Niedersächsischen Technischen Hochschulen (NTH)
Diese NTH-Forschergruppe besteht aus insgesamt sechs Instituten der Universitäten Braunschweig, Clausthal und Hannover, welche sich zum Thema der Digitalen Baufabrikation zusammengeschlossen haben. Die Gruppe verfolgt transdisziplinärer Ansatz unter Verwendung des von der DFG geförderten Großgerätes (DBFL). Der Schwerpunkt des auf drei Jahre angelegten Projekts liegt in Entwicklung einer schalungslosen Fertigung komplexer Betonbauteile unter Einsatz einer robotergestützten Spritztechnologie. Das Forschungsvorhaben ... [weiter]
Non-Waste-Wachsschalungen Neuartige Präzisions-Schalungen aus 100 % recycelbaren Industrie-Wachsen zur Herstellung von geometrisch komplexen Beton-Bauteilen
2014-2016 | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG)
Ziel des Vorhabens ist die Entwicklung einer neuartigen allgemeingültigen Schalungstechnologie, um Beton-Bauteile - insbesondere aus UHPC, aber aus Normalbetonen bis hin zu Leichtbetonen - möglichst wirtschaftlich und in nahezu jeder geometrisch komplexen Form mit maximaler Präzision herzustellen. Zudem soll die neue Schalungstechnologie nachhaltig sein, weswegen die gänzliche Vermeidung von Abfallprodukten angestrebt wird. Als formgebender Werkstoff wird Industriewachs verwendet, welcher durch Schmelzen gänzlich in den Materialkreislauf zurückgeführt werden kann. ...[weiter]
Ziel der Forschung im neuen Teilprojekt: „Von der Bauteilfügung zu leichten Tragwerken: Hybride, trocken gefügte Stab-, Flächen- und Raumtragelemente aus UHPFRC“ in der nun beginnenden zweiten Phase des laufenden DFG SPP 1542 ist es, die in der ersten Antragsphase entwickelten neuartigen Verbindungen für UHPFRC Bauteile in leistungsfähige leichte Stab, Flächen und Raumtragelemente zu überführen. Der neue Ansatz steckt in der Steigerung der Traglasten von Bauteilen und Tragwerken durch intelligente Kopplung einzelner modular aufgebauter Stab und Flächenelemente zu hybriden, zusammenwirkenden Tragelementen und Systemen. Durch Kombination trocken gestoßener Stäbe mit schubfest verbundenen, ebenen oder gekrümmten Flächenelementen lässt sich eine Vielzahl baupraktisch relevanter Tragwerkstypen realisieren, von den überwiegend biegebeanspruchten Tragwerken hin zu formoptimierten Schalen. ...[weiter]