Doctoral candidate
Pharmacist
Contact
Institut für Pharmazeutische Technologie und Biopharmazie
Technische Universität Braunschweig
Mendelssohnstraße 1
38106 Braunschweig
E-Mail: hillary.schulz(at)tu-braunschweig.de
Room: 035
Telephone: +49 531 391-5660
PVZ / Dep. 4
Room: 359
Telephone: +49 531 391-65654
Field of work
Development and characterization of a dynamic in-vitro model of the blood-brain barrier as an alternative to animal testing in preclinical drug research
The blood-brain barrier (BBB) is a significant physiological barrier that regulates the exchange of substances between the central nervous system (CNS) and the vascular system. It poses a major challenge in the development of new drugs and formulations that must cross this barrier to reach their site of action in the CNS. Traditionally, BBB transport and CNS uptake are studied using animal models. To reduce ethically questionable animal testing as well as the time and cost involved in the preclinical development of drugs, this work aims to establish a cell culture-based 3D in-vitro model of the BBB using the Dynamic Micro Tissue Engineering System (DynaMiTES) previously developed in our research group [1-4]. This system allows for the simulation of blood flow in brain capillaries and precise monitoring of cells and experimental conditions through microsensors. In this work, primary porcine endothelial cells, pericytes, and astrocytes will be used.
References
[1] Mattern K, Beißner N, Reichl S, et al. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations. Eur J Pharm Biopharm 2018; 126: 159–165. doi:10.1016/j.ejpb.2017.04.022
[2] Beiβner N, Mattern K, Dietzel A, et al. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 2 - Ocular DynaMiTES for drug absorption studies of the anterior eye. Eur J Pharm Biopharm 2018; 126: 166–176. doi:10.1016/j.ejpb.2017.03.021
[3] Hinkel S. Parametrische Untersuchung des Einflusses verschiedener Kultivierungsbedingungen auf die Barriereeigenschaften von hCMEC/D3 Zellen unter Verwendung eines dynamischen Zellkulturmodells. Universitätsbibliothek Braunschweig; 2020. doi:10.24355/DBBS.084-202008121326-0
[4] Lorenz T, Kirschke M, Ledwig V, et al. Microfluidic System for In Vivo-Like Drug Permeation Studies with Dynamic Dilution Profiles. Bioengineering (Basel) 2021; 8. doi:10.3390/bioengineering8050058