TP4- Exploration of homeostasis in neuronal sub-compartments by localized two-photon excitation and high-content microscopy

Our project aims to understand the molecular mechanisms underlying the rules of neuronal plasticity under physiological and pathological conditions. Of particular importance is how the balance between adaptability (plasticity) and stability (homeostasis) is maintained within central nervous system networks and within different neuronal compartments. Therefore, we aim to compare molecular dynamics within different neuronal subcompartments upon changes in neuronal homeostasis status and correlate these with high-resolution dendrite morphology and neuronal activation. To this end, we will combine interdisciplinary expertise from engineering and life sciences, including novel nanometric and programmable LED excitation technologies, ad hoc fabricated microfluidic chambers, and high-end detection technologies to simultaneously observe microscopic neuronal morphology at the highest possible resolution and the behavior of thousands of individual biomolecules within different subneuronal compartments. In particular, we can draw on joint, previously published preliminary methodological work in which we observed, for example, single-molecule dynamics in desired neuronal areas by targeted placement of 2-photon excitation volumes limited to 250 nm, and simultaneously documented changes in the membrane morphology of living neurons using novel high-resolution fluorescence methods.

Schematic illustration of the microfluidic chamber: A: separate manipulation and imaging of axonal terminals and dendrites. A: insert: the local superfusion to specifically manipulate dendrites branches. B: position of the local superfusion spot (light blue) and of two-photon observation volumes (red dots) at dendrites within (M: manipulations) or outside (C: control) the superfusion area. C: spots of multiple 2photon volumes (light red) allowing measurement of the dynamics(arrows) of multiple biomolecules (labelled with different fluorochromes, red or green dots).
Schematic illustration of the microfluidic chamber: A: separate manipulation and imaging of axonal terminals and dendrites. A: insert: the local superfusion to specifically manipulate dendrites branches. B: position of the local superfusion spot (light blue) and of two-photon observation volumes (red dots) at dendrites within (M: manipulations) or outside (C: control) the superfusion area. C: spots of multiple 2photon volumes (light red) allowing measurement of the dynamics(arrows) of multiple biomolecules (labelled with different fluorochromes, red or green dots).

Publications:

  • Chen, J. H., Kellner, Y., Zagrebelsky, M., Grunwald, M., Korte, M., & Walla, P. J. (2015). Two-Photon Correlation Spectroscopy in Single Dendritic Spines Reveals Fast Actin Filament Reorganization during Activity-Dependent Growth. PloS one, 10(5), e0128241. https://doi.org/10.1371/journal.pone.0128241
  • Fricke, S., Metzdorf, K., Ohm, M., Haak, S., Heine, M., Korte, M., & Zagrebelsky, M. (2019). Fast Regulation of GABAAR Diffusion Dynamics by Nogo-A Signaling. Cell reports, 29(3), 671–684.e6. https://doi.org/10.1016/j.celrep.2019.09.015
  • Hafi, N., Grunwald, M., van den Heuvel, L. S., Aspelmeier, T., Steinem, C., Korte, M., Munk, A., & Walla, P. J. (2016). Reply to "Polarization modulation adds little additional information to super-resolution fluorescence microscopy". Nature methods, 13(1), 8–9. https://doi.org/10.1038/nmeth.3721
  • Kellner, Y., Fricke, S., Kramer, S., Iobbi, C., Wierenga, C. J., Schwab, M. E., Korte, M., & Zagrebelsky, M. (2016). Nogo-A controls structural plasticity at dendritic spines by rapidly modulating actin dynamics. Hippocampus, 26(6), 816–831. https://doi.org/10.1002/hipo.22565
  • Michaelsen-Preusse, K., Zessin, S., Grigoryan, G., Scharkowski, F., Feuge, J., Remus, A., & Korte, M. (2016). Neuronal profilins in health and disease: Relevance for spine plasticity and Fragile X syndrome. Proceedings of the National Academy of Sciences of the United States of America, 113(12), 3365–3370. https://doi.org/10.1073/pnas.1516697113
  • Pieper, A., Hohgardt, M., Willich, M., Gacek, D. A., Hafi, N., Pfennig, D., Albrecht, A., & Walla, P. J. (2018). Biomimetic light-harvesting funnels for re-directioning of diffuse light. Nature communications, 9(1), 666. https://doi.org/10.1038/s41467-018-03103-4

  • Zagrebelsky, M., Gödecke, N., Remus, A., & Korte, M. (2018). Cell type-specific effects of BDNF in modulating dendritic architecture of hippocampal neurons. Brain structure & function, 223(8), 3689–3709. https://doi.org/10.1007/s00429-018-1715-0

Contact

Prof. Dr. Martin Korte
Technische Universität Braunschweig
Zoologisches Institut
Abteilung für Zelluläre Neurobiologie
Spielmannstraße 7
38106 Braunschweig
Tel.: 0531 391-3220
E-Mail: m.korte@tu-braunschweig.de
www.tu-braunschweig.de/zoology


Dr. Marta Zagrebelsky
TU Braunschweig
Zoologisches Institut
Abt. Zelluläre Neurobiologie
Biozentrum
Spielmannstr. 7
38106 Braunschweig
Tel.: +49 (0)531 391 3225
Email: m.zagrebelsky[at]tu-braunschweig.de
https://www.tu-braunschweig.de/zoology/forschung/cellular-neurobiology/ag-zagrebelsky


Prof. Dr. Peter Jomo Walla
Technische Universität Carolo-Wilhelmina zu Braunschweig
BRICS - Braunschweig Integrated Centre of Systems Biology
Rebenring 56
38106 Braunschweig
Germany
Tel: +49 531 / 391-5328
Email: p.walla(at)tu-braunschweig.de
https://www.tu-braunschweig.de/pci/agwalla