Publications

Publications in journals with peer-review

  1. New fluorogenic triacylglycerols as sensors for dynamic measurement of lipid oxidation. M. Handke, F. Beierlein, P. Imhof, M. Schiedel,# S. Hammann.# Anal. Bioanal. Chem. (2024), accepted manuscript, preprint available via https://doi.org/10.1007/s00216-024-05642-w [#shared corresponding authorship].

  2. We are MedChem: The Frontiers in Medicinal Chemistry 2024. M. Schiedel, P. Barbie, F. Pape, M. Pinto, A. Unzue  Lopez, M. Méndez, G. Hessler, D. Merk, M. Gehringer, C. Lamers. ChemMedChem (2024), e202400543. Impact factor: 3.540

  3. Development of a NanoBRET assay platform to detect intracellular ligands for the chemokine receptors CCR6 and CXCR1. M.E. Huber, S.L Wurnig, A.F.A Moumbock, L. Toy, E. Kostenis, A. Alonso Bartolomé, M. Szpakowska, A. Chevigné, S. Günther, F.K. Hansen,# M. Schiedel.# ChemMedChem (2024), accepted article [#shared corresponding authorship]. https://doi.org/10.1002/cmdc.202400284. Impact factor: 3.540

  4. Fluorophore-labeled pyrrolones targeting the intracellular allosteric binding site of the chemokine receptor CCR1. L. Toy, M.E. Huber, M. Lee, A. Alonso Bartolomé, N.V. Ortiz Zacarías, S. Nasser, S. Scholl, D.P. Zlotos, Y. M. Mandour, L.H. Heitman, M. Szpakowska, A. Chevigné, M. Schiedel. ACS Pharmacol. Transl. Sci. 7 (2024), 2080-2092. https://doi.org/10.1021/acsptsci.4c00182. Impact factor: 6.000

  5. Development of a fluorescent ligand for the intracellular allosteric binding site of the neurotensin receptor 1. H. Vogt, P. Shinkwin, M.E. Huber, N. Staffen, H. Hübner, P. Gmeiner, M. Schiedel, Dorothee Weikert. ACS Pharmacol. Transl. Sci. 7 (2024), 1533-1545. https://pubs.acs.org/doi/10.1021/acsptsci.4c00086. Impact factor: 6.000

  6. Development and initial characterization of the first 18F-CXCR2-targeting radiotracer for PET imaging of neutrophils. P. Spatz, X. Chen, K. Reichau, M.E. Huber, S. Mühlig, Y. Matsusaka, M. Schiedel, T. Higuchi, M. Decker.  J. Med. Chem. 67 (2024), 6327-6343. https://doi.org/10.1021/acs.jmedchem.3c02285. Impact factor: 7.300

  7. Small molecule ligands of the BET-like bromodomain, SmBRD3, affect Schistosoma mansoni survival, oviposition, and development. M. Schiedel*, D. McArdle*, G. Padalino*, A.K.N. Chan, J. Forde-Thomas, M. McDonough, H. Whitel, M. Beckmann, R. Cookson, K.F. Hoffmann, S.J. Conway. J. Med. Chem. 66 (2023), 15801-15822. https://doi.org/10.1021/acs.jmedchem.3c01321. [*shared first authorship]. Impact factor: 7.300
  8. Development of first-in-class dual Sirt2/HDAC6 inhibitors as molecular tools for dual inhibition of tubulin deacetylation. L. Sinatra, A. Vogelmann, F. Friedrich, M.A. Tararina, E. Neuwirt, A. Colcerasa, P. König, L. Toy, T.Z. Yesiloglu, S. Hilscher, L. Gaitzsch, N. Papenkordt, S. Zhai, L. Zhang, C. Romier, O. Einsle, W. Sippl, M. Schutkowski, O. Groß, G. Bendas, D. Christianson, F. Hansen, M. Jung, M. Schiedel. J. Med. Chem. 66 (2023), 14787-14814. https://pubs.acs.org/doi/full/10.1021/acs.jmedchem.3c01385. Impact factor: 7.300
  9. Mutate and conjugate: A method to enable rapid in-cell target validation. A.M. Thomas, M. Serafini, E.K. Grant, E.A.J. Coombs, J.P. Bluck, M. Schiedel, M.A. McDonough, J.K. Reynolds, B. Lee, M. Platt, V. Sharlandjieva, P.C. Biggin, F. Duarte, T.A. Milne, J.T. Bush, S.J. Conway. ACS Chem. Biol. 18 (2023), 2405-2417. https://pubs.acs.org/doi/10.1021/acschembio.3c00437.  Impact factor: 4.000
  10. Fluorescent ligands enable target engagement studies for the intracellular allosteric binding site of the chemokine receptor CXCR2. M.E. Huber, S. Wurnig, L. Toy, C. Weiler, N. Merten, E. Kostenis#, F.K. Hansen#, M. Schiedel#J. Med. Chem. 66 (2023), 9916–9933 [#shared corresponding authorship]. https://doi.org/10.1021/acs.jmedchem.3c00769. Impact factor: 7.300
  11. Back in person: Frontiers in Medicinal Chemistry 2023. M. Gehringer, F. Pape, M. Méndez, P. Barbie, A. Unzue Lopez, J. Lefranc, F.-M. Klingler, G. Hessler, T. Langer, E. Diamanti#, M. Schiedel#. ChemMedChem (2023), e202300344 [#shared corresponding authorship]. https://doi.org/10.1002/cmdc.202300344. Impact factor: 3.540
  12. Small molecule tools to study cellular target engagement for the intracellular allosteric binding site of GPCRs. M.E. Huber, L. Toy, M.F. Schmidt, D. Weikert, M. Schiedel. Chem. Eur. J., 29 (2023), e202202565. https://doi.org/10.1002/chem.202202565. Impact factor: 5.020
  13. Fluorescent ligands targeting the intracellular allosteric binding site of the chemokine receptor CCR2. L. Toy, M.E. Huber, M.F. Schmidt, D. Weikert, M. Schiedel. ACS Chem. Biol., 17 (2022), 2142-22152. https://pubs.acs.org/doi/10.1021/acschembio.2c00263. Impact factor: 4.634
  14. Development of a NanoBRET assay to validate dual inhibitors of Sirt2-mediated lysine deacetylation and defatty-acylation that block prostate cancer cell migration. A. Vogelmann, M. Schiedel, N. Wössner, A. Merz, D. Herp, S. Hammelmann, A. Colcerasa, G. Komaniecki, J.Y. Hong, M. Sum, E. Metzger, E. Neuwirt, L. Zhang, O. Einsle, O. Groß, R. Schüle, H. Lin, W. Sippl, M. Jung. RSC Chem. Biol. 3 (2022), 468-485. https://doi.org/10.1039/D1CB00244A. Impact factor: 4.100
  15. Comparison of cellular target engagement methods for the tubulin deacetylases Sirt2 and HDAC6: NanoBRET, CETSA, tubulin acetylation, and PROTACs. A. Vogelmann, M. Jung, F.K. Hansen, M. Schiedel. ACS Pharmacol. Transl. Sci. 5 (2022), 138-140. https://doi.org/10.1021/acsptsci.2c00004. Impact factor: 3,500
  16. A chemical biology toolbox targeting the intracellular binding site of CCR9: Fluorescent ligands, new drug leads and PROTACs. E. Huber, L. Toy, M.F. Schmidt, H. Vogt, J. Budzinski, M.F.J. Wiefhoff, N. Merten, E. Kostenis, D. Weikert, M. Schiedel. Angew. Chem. Int. Ed., 61 (2022), e202116782. https://doi.org/10.1002/anie.202116782Angew. Chem., 134 (2022), e202116782. https://doi.org/10.1002/ange.202116782. Impact factor: 15,336
  17. Controlling Intramolecular Interactions in the Design of Selective, High-Affinity, Ligands for the CREBBP Bromodomain. M. Brand, J. Clayton, M. Moroglu, M. Schiedel, S. Picaud, J. Bluck, A. Skwarska, H. Bolland, A.K.N. Chan, C.M.C. Laurin, A.R. Scorah, L. See, T.P.C. Rooney, K.H. Andrews, O. Fedorov, G, Perell, P. Kalra, K.B. Vinh, W.A. Cortopassi, P. Heitel, K.E. Christensen, R.I. Cooper, R.S. Paton, W.C.K. Pomerantz, P.C. Biggin, E.M. Hammond, P. Filippakopoulos, S.J Conway. J. Med. Chem. 64 (2021), 10102-10123. https://doi.org/10.1021/acs.jmedchem.1c00348. Impact factor: 6.205
  18. Call for Papers: “Epigenetics 2.0”—A Joint Virtual Special Issue on Epigenetics. Bhatia#, F.K. Hansen#, M. Schiedel#ACS Pharmacol. Transl. Sci. 4 (2021), 1262-1263. https://doi.org/10.1021/acsptsci.1c00156 [#shared corresponding authorship]. Impact factor: 3,500
  19. Fragment-based identification of ligands for bromodomain-containing factor 3 of Trypanosoma cruzi. C. Laurin, J. Bluck, A. Chan, M. Keller, A. Boczek, A. Scorah, K.F. See, L. Jennings, D. Hewings, F. Woodhouse, J. Reynolds, M. Schiedel, P. Humphreys, P. Biggin, S. Conway,  ACS Infect. Dis. 7 (2021), 2238-2249. https://doi.org/10.1021/acsinfecdis.0c00618. Impact factor: 4.614
  20. HaloTag-targeted Sirtuin rearranging ligand (SirReal) for the development of proteolysis targeting chimeras (PROTACs) against the lysine deacetylase Sirtuin 2 (Sirt2). M. Schiedel, A. Lehotzky, S. Szunyogh, J. Oláh, S. Hammelmann, N. Wössner, D. Robaa, O. Einsle, W. Sippl, J. Ovádi, M. Jung. ChemBioChem 21 (2020), 3371-3376. https://doi.org/10.1002/cbic.202000351. Impact factor: 2.576
  21. Validation of slow off-kinetics of sirtuin rearranging ligands (SirReals) by means of the label-free electrically switchable nanolever technology. M. Schiedel*, H. Daub*, A. Itzen, M. Jung [*contributed equally]. ChemBioChem 21 (2020), 1161-1166. https://doi.org/10.1002/cbic.201900527. Impact factor: 2.576
  22. Chemical epigenetics: the impact of chemical- and chemical biology techniques on bromodomain target validation. M. Schiedel, M. Moroglu, D.M.H. Ascough, A.E.R. Chamberlain, J.J.A.G. Kamps, A.R. Sekirnik, S.J. Conway. Angew. Chem. Int. Ed. 58 (2019), 17930-17952. https://doi.org/10.1002/anie.201812164. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew. Chem. 131 (2019), 18096-18120. https://doi.org/10.1002/ange.201812164. Impact factor: 12.959
  23. Opening the selectivity pocket in the human lysine deacetylase sirtuin 2 – New opportunities, new questions. Robaa, D. Monaldi, N. Wössner, N. Kudo, T. Rumpf, M. Schiedel, M. Yoshida, M. Jung. Chem. Rec. 18 (2018), 1701-1707. https://doi.org/10.1002/tcr.201800044. Impact factor: 5.387
  24. Small molecules as tools to study the chemical epigenetics of lysine acetylation. M. Schiedel#, S.J. Conway# [#shared corresponding authorship]. Curr. Opin. Chem. Biol. 45 (2018), 166-178. https://doi.org/10.1016/j.cbpa.2018.06.015. Impact factor: 8.544
  25. BET bromodomain ligands: Probing the WPF shelf to improve BRD4 bromodomain affinity and metabolic stability. L.E. Jennings*, M. Schiedel*, D.S. Hewings, S. Picaud, C.M.C. Laurin, P.A. Bruno, J.P. Bluck, A.R. Scorah, L. See, J.K. Reynolds, M. Moroglu, I.N. Mistry, A. Hicks, P. Guzanov, J. Clayton, C.N.G. Evans, G. Stazi, P.C. Biggin, A.K. Mapp, E.M. Hammond, P.G. Humphreys, P. Filippakopoulos, S.J. Conway [*contributed equally]. Bioorg. Med. Chem. 26 (2018), 2937-2957. https://doi.org/10.1016/j.bmc.2018.05.003. Impact factor: 2.802
  26. New chemical tools for probing activity and inhibition of the NAD+ dependent lysine deacylase sirtuin 2. S. Swyter*, M. Schiedel*, D. Monaldi, S. Szunyogh, A. Lehotzky, T. Rumpf, J. Ovádi, W. Sippl, M. Jung [*contributed equally]. Phil. Trans. R. Soc. B 373 (2018), 20170083. https://doi.org/10.1098/rstb.2017.0083. Impact factor: 6.139
  27. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). M. Schiedel, D. Herp, S. Hammelmann, S. Swyter, A. Lehotzky, D. Robaa, J. Olah, J. Ovádi, W. Sippl, M. Jung. J. Med. Chem. 61 (2018), 482-491. https://doi.org/10.1021/acs.jmedchem.6b01872. Impact factor: 6.054
  28. The current state of NAD+-dependent histone deacetylases (sirtuins) as novel therapeutic targets. M.  Schiedel, D, Robaa, T. Rumpf, W. Sippl, M. Jung. Med. Res. Rev. 38 (2018), 147-200. https://doi.org/10.1002/med.21436. Impact factor: 9.791
  29. Modulation of microtubule acetylation by the interplay of TPPP/p25, SIRT2 and new anticancer agents with anti-SIRT2 potency. A. Szabó, J. Oláh, S. Szunyogh, A. Lehotzky, T. Szénási, M. Csaplár, M. Schiedel, P. Lőw, M. Jung, J. Ovádi. Sci. Rep. 7 (2017), 17070. https://doi.org/10.1038/s41598-017-17381-3. Impact factor: 4.122
  30. Synthesis and biological evaluation of 8-hydroxy-2,7-naphthyridin-2-ium salts as novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). M. Schiedel, A. Fallarero, C. Luise, W. Sippl, P. Vuorela, M. Jung. MedChemComm 8 (2017), 465-470. https://doi.org/10.1039/C6MD00647G. Impact factor: 2.342
  31. Aminothiazoles as potent and selective Sirt2 inhibitors: A structure-activity relationship study. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, J. Oláh, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. J. Med. Chem. 59 (2016), 1599-1612. https://doi.org/10.1021/acs.jmedchem.5b01517. Impact factor: 6.259
  32. A continuous, fluorogenic sirtuin 2 deacylase assay: substrate screening and inhibitor evaluation. I. Galleano, M. Schiedel, M. Jung, A.S. Madsen, C.A. Olsen. J. Med. Chem. 59 (2016), 1021-1031. https://doi.org/10.1021/acs.jmedchem.5b01532. Impact factor: 6.259
  33. Structure-based development of an affinity probe for sirtuin 2. M. Schiedel, T. Rumpf, B. Karaman, A. Lehotzky, S. Gerhardt, J. Ovádi, W. Sippl, O. Einsle, M. Jung. Angew. Chem. Int. Ed. 55 (2016), 2252-2256. https://doi.org/10.1002/anie.201509843. Strukturbasierte Entwicklung einer Affinitätssonde für Sirtuin 2. Angew. Chem. 128 (2016), 2293-2297. https://doi.org/10.1002/ange.201509843. Impact factor: 11.994
  34. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. T. Rumpf, M. Schiedel, B. Karaman, C. Roessler, B.J. North, A. Lehotzky, J. Oláh, K.I. Ladwein, K. Schmidtkunz, M. Gajer, M. Pannek, C. Steegborn, D.A. Sinclair, S. Gerhardt, J. Ovádi, M. Schutkowski, W. Sippl, O. Einsle, M Jung. Nat. Commun. 6 (2015), 6263. https://doi.org/10.1038/ncomms7263. Impact factor: 11.329
  35. Fluorescence-based screening assays for the NAD⁺-dependent histone deacetylase smSirt2 from Schistosoma mansoni. M. Schiedel, M. Marek, J. Lancelot, B. Karaman, I. Almlöf, J. Schultz, W. Sippl, R.J. Pierce, C. Romier, M. Jung. J. Biomol. Screen. 20 (2015), 112-121. https://doi.org/10.1177/1087057114555307. Impact factor: 2.218
  36. Chromo-pharmacophores: photochromic diarylmaleimide inhibitors for sirtuins. Falenczyk, M. Schiedel, B. Karaman, T. Rumpf, N. Kuzmanovic, M. Grøtli, W. Sippl, M. Jung, B. König. Chem. Sci. 5 (2014), 4794-4799. https://doi.org/10.1039/C4SC01346H. Impact factor: 9.211

Other publications

  1. A fluorescent probe enables the discovery of improved antagonists targeting the intracellular allosteric site of the chemokine receptor CCR7. S.L. Wurnig, M.E. Huber, C. Weiler, H. Baltrukevich, N. Merten, I. Stötzel, Y. Chang, R.H.L. Klammer, D. Baumjohann, E. Kiermaier, P. Kolb, E. Kostenis, M. Schiedel,# F.K. Hansen.# bioRxiv (2024), preprint available via https://doi.org/10.1101/2024.08.27.607356 [#shared corresponding authorship].
  2. Introducing Matthias Schiedel, Angew. Chem. Int. Ed., 61 (2021), e202200131. https://doi.org/10.1002/anie.202200131.
  3. Front Cover: Validation of the Slow Off-Kinetics of Sirtuin-Rearranging Ligands (SirReals) by Means of Label-Free Electrically Switchable Nanolever Technology. ChemBioChem 21 (2020), 8, https://doi.org/10.1002/cbic.202000190.
  4. Epigenetiker treffen sich in Freiburg. [Epigeneticists meet up in Freiburg.] M. Schiedel, M. Jung, Nachr. Chem. 64 (2016), 904. https://doi.org/10.1002/nadc.20164054947.
  5. Epigenetische Wirkstoffforschung. [Epigenetic drug discovery.] M. Schiedel, M. Jung, Nachr. Chem. 62 (2014), 302-306. https://doi.org/10.1002/nadc.201490087.
  6. Resveratrol ist zurück! [Resveratrol is back!] M. Schiedel, M. Jung, Pharmakon. 1 (2013), 446‑448.
  7. Fehlregulation der Histon‐Acetylierung als molekulare Grundlage der Demenzentwicklung. [Dysregulation of histone acetylation as a molecular basis for the development of dementia.] M. Schiedel, M. Jung, Pharm. Unserer Zeit 40 (2011), 297-299. https://doi.org/10.1002/pauz.201190039.
  8. HIV‐1‐Eradikation durch “shock & kill”‐ [HIV-1 eradication with the “shock and kill” strategy.] M. Schiedel, Pharm. Unserer Zeit 39 (2010), 171-173. https://doi.org/10.1002/pauz.201090026.