In typical applications of quantum chemistry, a single or a few calculations are usually not sufficient. Instead, more complicated workflows are needed, in which a series of interrelated computational tasks is performed. In particular multiscale simulations, which combine different levels of accuracy, require a large number of individual calculations that depend on each other.
To automate such workflows, we have developed PyADF, a scripting framework for quantum chemistry. It handles all steps necessary in a typical workflow in quantum chemistry and is easily extensible. PyADF is written in the Python programming language and is interfaced to a number of different program packages, most importantly ADF, Dalton, Dirac, and NWChem.
Download PyADF
Version 1.2 (Feb 2019), PyADF Release v1.2
Some information on PyADF can be found here:
Poster descriping an early version PyADF (2007)
Paper describing PyADF
The calculation of vibrational spectra of large (bio-)molecules is not only demanding in terms of computational resources, but the resulting spectra are also difficult to analyze: Many close-lying normal modes contribute to each observed peak, and each of these normal modes is usually delocalized over the whole molecule.
To address this problem, we have developed an methodology for localizing normal modes and have shown how this makes an intuitive analysis of calculated vibrational spectra of polypeptides and proteins possible.
LocVib is a set of Python scripts for performing such an analysis in terms of localized vibrations.
LocVib will be released soon
An initial version is included in the release of MoViPac (Download at ETH Zurich)
Coming soon...
ADF is a program package for density-functional theory (DFT) calculations, developed in a number of research groups worldwide.
Over the past years, we have contributed mainly to the implementation of the frozen-density embedding (FDE) scheme in ADF. The new implementation that became available in ADF2007, allows for a very flexible setup employing many fragments that can each be treated using different levels of accuracy.
In addition, we have developed implemented a scheme for embedding a wave-function theory (WFT) based description in a DFT environment. This WFT-in-DFT embedding implementation currently relies on ADF for the DFT part as well as for calculating the embedding potential.
DIRAC is a quantum-chemical program package for relativistic electronic structure calculations. It is developed by researchers from all over the world and is freely available to academic users.
Together with Andre Gomes (Lille) and Lucas Visscher (Amsterdam) we are working on the implementation of embedding schemes in DIRAC, that allow to include the effect of an environment described with density-functional theory in the very accurate relativistic calculations possible with DIRAC.
DIRAC program website
Paper describing WFT-in-DFT embedding in DIRAC
Research Groups
Bauerecker Group
Hohm Group
Jacob Group
Maul Group
Proppe Group
Tschierlei Group
Walla Group
Associated Groups
Muñoz Group (GRS)
Emeriti
Becker Group
Gericke Group
Personnel
Institute Director
Executive Board
Staff
Facilities
Workshop
School lab (G)
Agnes Pockels lab
Documents
Institute Rules (G)
Operation Manuals
Laser safety
Emergency numbers
Campus Map (G) Events Calendar (G)
TU Public Announcements
Whistle Blowing (G)
Ticket GITZ (G)
Ticket Facilities Management (G)
Energy Web Portal (G)
(G) German only