PaNSiWa

PaNSiWa

Parameterization of Nonlinear Ship-induced 3D Wave Fields for the Hydraulic Design of Protective Structures in Maritime Waterways

Direction Dr.-Ing. Markus Brühl
Team Dr.-Ing. Markus Brühl
Funding DFG BR 5289/2-1
Duration 01.01.2017 - 31.12.2019
Project Partners Bundesanstalt für Wasserbau (BAW)

Brief description

1. Motivation and Objectives

In the last 15 years an increased number of serious damages of protective structures such as groins and revetments have been observed in the maritime waterways. The analyses of these damages have shown that the current design approaches for the rubble mound layers of such structures are not sufficient to ensure sufficient stability against ship-induced wave loads. Since these approaches are determined for wind-induced waves, they do not consider the longperiod ship-wave components. A joint research project 'Ship-induced long-period loads for the design of rubble mound structures in maritime waterways' with BAW, HPA, IWW (RWTH Aachen) and LWI (TU Braunschweig) was initiated 2011. The focus of that project was to provide design standards for rubble mound structures. The analyses that have been conducted by LWI were completed in August 2013. The results have allowed us to clearly identify the knowledge gaps with respect to the classification and parameterization of ship waves. The project clearly has shown the need for a 3D analysis of three-dimensional, nonlinear ship wave fields, which was not part of the aforementioned joint research project. Moreover, it provided extensive ship wave data sets and valuable contacts, which are indispensable for the proposed research.

The primary objective of the proposed project is to generate the scientific knowledge for the parameterization of ship-induced 3D wave fields as required for the hydraulic design of rubble mound structures in maritime waterways with a special focus on the spatial and nonlinear properties of ship waves.

2. Work Programme and Methodology

The key research issues are:

  • the numerical implementation of a nonlinear Fourier transform for the nonlinear frequency-domain analysis of three-dimensional ship wake fields (3D-NLFT),
  • the numerical implementation of the Hilbert-Huang transform for the nonlinear time-frequency-domain analysis of three-dimensional ship wake fields (3D-HHT),
  • a comparative analysis of ship-wave data using the implemented analysis methods (3D-NLFT and 3D-HHT) as well as conventional FFT,
  • the parameterization of 3D ship wave fields in order to determine the relevant hydraulic design parameters for protective rubble mound structures in maritime waterways.

3. Prospective Results

Within the project, recommendations will be developed for the selection of appropriate methods for the determination of wave parameters as well as for the selection of appropriate wave parameters that have been determined within this project. In the literature, definitions of the relevant wave parameters are available for 2D ship waves that will be extended and specified more precisely within this project. For 3D ship waves no data are available how to parametrize the ship waves. So for these 3D waves we have to determine which parameters and values from 2D ship waves are representative, and which parameters and values have to be determined additionally in order to accurately describe the 3D ship wave fields. For this, additional simulations and data analyses have to be performed. Finally, after the definition of the representative parameters, ship waves from laboratory tests, field measurements and numerical simulations will be typed and classified based on these definitions. Within this procedure, the different problems and processes will be considered that are responsible for the interaction between ship-induced waves and protective measures in maritime waterways.

Acknowledgements

The project 'Parameterization of nonlinear ship-induced 3D wave fields for the hydraulic design of protective structures in maritime waterways (PaNSiWa)' is funded by Deutsche Forschungsgemeinschaft (German Research Foundation).

Project Partners

The project PaNSiWa is develeoped from a joint research project between Bundesanstalt für Wasserbau (BAW), Hamburg, Institute of Hydraulic Engineering and Water Resources Management, RWTH Aachen University, and Leichtweiß-Institute for Hydraulic Engineering and Water Resources (LWI), Dept. of Hydromechanics and Coastal Engineering. Within PaNSiWa results and data from this joint research project will be used, especially data from the 3D basin of BAW, Hamburg.

References

Brühl, M. (2014): Direct and inverse nonlinear Fourier transform based on the Korteweg-deVries equation (KdV-NLFT) - A spectral analysis of nonlinear surface waves in shallow water. PhD Thesis, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Technische Universität Braunschweig, Braunschweig, Germany. (http://www.digibib.tu-bs.de/?docid=00058144).

Brühl, M.; Oumeraci, H. (2014): Analysis of propagation of long waves in shallow water using the nonlinear Fourier transform (NLFT). Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2014), OMAE2014-24165, June 8-13, 2014, San Francisco, USA, 9 pp.

Brühl, M.; Oumeraci, H. (2014): Nonlinear Fourier transform (NLFT) for the identification of transmitted solitons behind submerged reefs: The reconstruction of the original data. Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2014), OMAE2014-24162, June 8-13, 2014, San Francisco, USA, 9 pp.

Brühl, M.; Oumeraci, H. (2014): Die nichtlineare Fourier-Transformation im Wasserbau: Grundlagen und Anwendungsbeispiele. 44. Internationales Wasserbau-Symposium Aachen (IWASA 2014), Aachen, Germany.

Brühl, M.; Oumeraci, H. (2014): Identification and analysis of transient waves in shallow water using the KdV-based nonlinear Fourier transform (KdV-NLFT). EGU General Assembly 2014, EGU2014-16174, 27 April - 02 May 2014, Vienna, Austria.

Brühl, M.; Oumeraci, H. (2014): Identification of transient waves in shallow water using the KdV-based nonlinear Fourier transform (KdV-NLFT). 7th Chinese-German Joint Symposium on Hydraulic and Ocean Engineering (CGJOINT), September 07-12, 2014, Hannover, Germany.

Brühl, M.; Oumeraci, H. (2014): Identifizierung von transienten Wellen im Flachwasser mit der KdV-basierten nichtlinearen Fourier-Transformation (KdV-NLFT). 16. Treffen junger Wissenschaftler deutschsprachiger Wasserbauinstitute (16. JUWI-Treffen), 30. Juli - 1. August 2014, Braunschweig, Germany.

Oumeraci, H.;Brühl, M.; Neuert, N. (2014): Schiffserzeugte langperiodische Belastung zur Bemessung der Deckschichten von Strombauwerken an Schifffahrtsstraßen, Arbeitspaket AP5: Entwicklung eines 3D-CFD/CSD-Modells und numerische Stabilitätsuntersuchungen (Numerische Simulation), Abschlussbericht, . Technische Universität Braunschweig, Leichtweiß-Institut für Wasserbau (LWI), Abt. Hydromechanik und Küsteningenieurwesen, LWI-Bericht Nr. 1034, Braunschweig, 306 S.

Brühl, M.; Oumeraci, H. (2013): Frequenzanalyse und Parametrisierung von Schiffswellen aus hydraulischen Modellversuchen und numerischen Simulationen. 9. FZK-Kolloquium, FZK, Hannover, Germany.

Brühl, M.; Oumeraci, H. (2012): Nonlinear decomposition of transmitted wave trains from soliton fission using "Nonlinear Fourier transform (NLFT)": The spectral basic components. Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2012), OMAE2012-83418, July 1-6, 2012, Rio de Janeiro, Brasil, 10 pp.

Gossel, A.;Brühl, M.; Oumeraci, H. (2012): Influence of wave and structure parameters on the transformation of solitary waves at submerged reefs using nonlinear Fourier transform (NLFT). 4th International Conference on the Application of Physical Modelling to Port and Coastal Protection, September 17-20, 2012, Ghent, Belgium, 10 pp.

Oumeraci, H.; Brühl, M. (2012): Schiffserzeugte langperiodische Belastung zur Bemessung der Deckschichten von Strombauwerken an Schifffahrtsstraßen, Arbeitspaket AP5: Entwicklung eines 3D-CFD/CSD-Modells und numerische Stabilitätsuntersuchungen (Numerische Simulation), Teilbericht 1 (Arbeitspakete AP5-1 und AP5-2): AP5-1: Anpassung des 2D-CFD/CSD-Modells für die Ermittlung der schiffserzeugten Belastungen auf Deckschichten von Strombauwerken an SeeSchStr, AP5-2: Numerische 2D-Simulation schiffserzeugte Belastungen von Deckschickten als Vorstudien (Optimierung) zu kleinmaßstäblichen Versuchen im Wellenkanal (Entwurf, Stand 20.11.2012), . Technische Universität Braunschweig, Leichtweiß-Institut für Wasserbau (LWI), Abt. Hydromechanik und Küsteningenieurwesen, LWI-Bericht Nr. 1034, Braunschweig, 53 S.

Brühl, M.; Oumeraci, H. (2011): Anwendung der "Nichtlinearen Fourier-Transformation (NLFT)" für die Analyse von Solitonen hinter einem getauchten Riff. CoastDoc-Workshop, October 24-25, 2011, Braunschweig, 16 pp.

Brühl, M.; Oumeraci, H. (2011): Application of 'nonlinear Fourier transform (NLFT)' for the analysis of soliton fission behind submerged reefs with finite width. Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2011), OMAE2011-49668, June 19-24, 2011, Rotterdam, The Netherlands, 8 pp.

Brühl, M.; Oumeraci, H. (2010): Analysis of soliton fission over a submerged structure using 'Nonlinear Fourier Transform (NLFT)'. Proceedings of the International Conference on Coastal Engineering (ICCE 2010), No. 32(2010), Paper #: waves.59, Shanghai, China, 12 pp. Retrieved from journals.tdl.org/ICCE/.

Brühl, M.; Oumeraci, H. (2010): Nonlinear Fourier Transform (NLFT) for wave analysis and nonlinear processes in wave-structure interaction. 5th Workshop on Water Waves, September 30th - October 1st, 2010, Berlin, Conference presentation.