Raccoon: Automated Verification of Guarded Race Conditions in
Web Applications

Simon Koch
Institute for Application Security (TU Braunschweig)
Braunschweig, Germany
simon.koch@tu-braunschweig.de

Martin Johns
Institute for Application Security (TU Braunschweig)
Braunschweig, Germany
m.johns@tu-braunschweig.de

Abstract

Web applications are distributed, asynchronous applications that
can span multiple concurrent processes. They are intended to be
used by a large amount of users at the same time. As concurrent
applications, web applications have to account for race conditions
that may occur when database access happens concurrently. Unlike
vulnerability classes, such as XSS or SQL Injection, dbms based
race condition flaws have received little attention even though
their impact is potentially severe. In this paper, we present Rac-
COON, an automated approach to detect and verify race condition
vulnerabilities in web application. Raccoon identifies potential
race conditions through interleaving execution of user traces while
tightly monitoring the resulting database activity. Based on our
methodology we create a proof of concept implementation. We
test four different web applications and ten use cases and discover
six race conditions with security implications. RAcCOON requires
neither security expertise nor knowledge about implementation
or database layout, while only reporting vulnerabilities, in which
the tool was able to successfully replicate a practical attack. Thus,
RaccooN complements previous approaches that did not verify
detected possible vulnerabilities.

CCS Concepts
« Security and privacy — Web application security; Infor-
mation accountability and usage control.

Keywords
Race Conditions, Web Application Security Testing

ACM Reference Format:

Simon Koch, Tim Sauer, Martin Johns, and Giancarlo Pellegrino. 2020. Rac-
COON: Automated Verification of Guarded Race Conditions in Web Appli-
cations. In The 35th ACM/SIGAPP Symposium on Applied Computing (SAC
°20), March 30-April 3, 2020, Brno, Czech Republic. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3341105.3373855

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC °20, March 30-April 3, 2020, Brno, Czech Republic

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6866-7/20/03. .. $15.00
https://doi.org/10.1145/3341105.3373855

Tim Sauer
Institute for Application Security (TU Braunschweig)
Braunschweig, Germany
tim.sauer@tu-braunschweig.de

Giancarlo Pellegrino
CISPA Helmholtz Center for Information Security
Saarbriicken, Germany
gpellegrino@cispa.saarland

1 Introduction

The general intention of Web applications is to accommodate a
potentially large number of concurrent requests. This requirement
comes with a significant challenge: maintaining shared data con-
sistently across all processes. Such data can range from mundane
things such as the amount of visits over the last hour to business
critical information such as the remaining amount of a gift voucher.

To ensure consistency of data, e.g. ensure that a voucher is not
used for more money than it is worth, web application developers
deploy guards in form of conditional statements. Such a guard
ensures that an action, e.g. a value reduction, can only occur if the
current state of the data allows for it.

However, interleavings of concurrent read and write operations
can circumvent that guard and leave data in an inconsistent state.
These inconsistencies can be effectively exploited by attackers to
perform a wide range of attacks, e.g., double spending vouchers
in Instacart!, and duplicate money transfers between gift cards in
Starbucks?—to mention two past instances in popular websites.

As opposed to popular web vulnerabilities such as XSS and SQL
injection, the detection of guarded race condition (GRC) vulnera-
bilities in web applications has been marginally addressed. Prior
work has mainly focused on the problem of reasoning on SQL logs
to detect potential vulnerabilities [1, 2].

However, detection of potential GRC is not enough due to possi-
ble protective web application logic and the underlying database
structure that can prevent a detected potential GRC from manifest-
ing. Neither the web application logic nor the complete database
structure is entirely accounted for in current detection approaches
and thus a detected vulnerability is possibly not exploitable after
all. A usable methodology has to minimize occurrences of detected
possible but actually not exploitable vulnerability candidates. The
current state-of-the-art in GRC detection leaves it to the tester to
manually verify that the suspected vulnerability actually manifests
itself in an exploitable vulnerability.

For well-explored vulnerability classes, such as XSS or SQL in-
jection, this process is manageable, as it is usually formulaic and
independent of the semantics of the application. In contrast, man-
ual verification of a GRC is notoriously difficult. It requires good
understanding of the web application’s execution model and how
race conditions affect it. While the developer of the application

1See https://hackerone.com/reports/157996
2See https://sakurity.com/blog/2015/05/21/starbucks.html

https://doi.org/10.1145/3341105.3373855
https://doi.org/10.1145/3341105.3373855
https://hackerone.com/reports/157996

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

most likely has the latter, they probably lack the required security
expertise. A security expert should know the specifics of GRCs but
rarely knows the fine-grained details of the tested application’s
functionality.

We now take a step forward and present a methodology that en-
ables developers and security experts alike to automatically detect
and verify GRCs in web applications. We follow up with implement-
ing this methodology as the novel race condition verification tool
RaccooN to show the practicality of the methodology.

To the best of our knowledge, Raccoon is the first tool providing
a comprehensive and automated approach concerning GRCs cov-
ering all the necessary steps from detection up to verification. We
report on the effectiveness of Raccoon by assessing four real-size
web applications and ten use cases. We discover six GRCs with
security implications using RAccooN.

Our Contributions:

e Weisolate and define the programmatically verifiable guarded
race conditions (GRC)

e We present the first comprehensive automated security test-
ing methodology to detect and verify GRCs in web applica-
tions

e We implement RAccooN, a prototype implementation of our
methodology?

e We apply RaccooN against four real-size web applications
and discover six GRCs all of which have security implications

We introduce our methodology and results as followed: First
we discuss the related work (Sec. 2). We continue by going into
the background details of GRC and state the challenges that we
addressed (Sec. 3). We follow up by stating our general approach
on solving the challenges (Sec. 4) and describe how we actually
implemented it (Sec. 5). We then report on the application of our
implementation in a real world scenario and present the results
(Sec. 6). Finally, we give a prospect of future work (Sec. 7), and a
conclusion summarizing our contributions and results (Sec. 8).

2 Related Work

Related work falls into two main areas: dynamic web applica-
tion testing and database based race condition detection in web
applications.

Race Condition Detection in Web Applications

Race condition vulnerabilities in web applications did not yet get
as much attention by the scientific community as other, easier to
detect security vulnerabilities and are not listed in the most recent
OWASP Top 10 report [3] despite the fact that exploitation can lead
to extensive financial damages [4, 5].

Bailis et al. empirically investigated ORM-backed applications
and the corresponding feral database concurrency control in Ruby
on Rails applications [6]. However, this only covers the niche of
possible web applications that are Ruby based. Additionally, they
focused on database inconsistencies (e.g. foreign key mismatches).
They did not state security concerns as an explicit focus.

Warszawski et al. propose a method for detecting race conditions
using extensive modeling based on collected trace data. They gen-
erate an abstract history graph corresponding to a given SQL query
trace and use a graph traversal algorithm to find vulnerabilities

3Source code:https://github.com/simkoc/raccoon

Simon Koch, Tim Sauer, Martin Johns, and Giancarlo Pellegrino

in and between requests [1]. They verified their results by hand
using either brute force or inserting a small network delay in the
communication between web application and database server. We
extend their idea of delaying the communication by focusing the
delay on only the queries of interest and using this for an automated
testing tool. Additionally, Warszawski et al. reported an GRC for
voucher usage in the eCommerce web application OpenCart and,
thus, provided a partial ground truth for the evaluation of Raccoon.

Zheng et al. developed a context- and path-sensitive interproced-
ual static analysis to detect atomicity violations on shared external
resources in PHP and are able to infer potential GRCs [7]. They
conducted their verification of detected vulnerabilities by hand.
They report on a GRC in the coupon usage in OpenCart and, thus,
provided a partial ground truth for the evaluation of Raccoon.

Paleari et al. were the first to report dbms based GRCs in web
applications a valid security concern in the scientific literature. In
their work they propose an algorithm based on SQL query traces
to detect GRCs. They introduce the notion of interdependence
between SQL queries as a way to detect possible GRCs and define
an algorithm to detect interdependent SQL queries [2]. Finally,
they manually verified their results. Their algorithm represents
the current GRCs candidate generation module of Raccoon. We,
thus, extend the approach of Paleari et al. by embedding it into an
automated verification facility.

The listed work is mainly concerned with a methodology for the
detection of possible GRCs. They perform the remaining work, i.e.,
data gathering, testing, and verification manually. Consequently,
our methodology that only requires a tester to provide user ac-
tions, a web application and allows plugging in arbitrary detection
algorithms is a novel contribution to the field of race condition
vulnerabilities in web applications.

Dynamic Web Application Testing using User Traces

Basic web vulnerabilities can be found using automated crawling.
However, crawling can only test for a small selection of possible
security vulnerabilities and more complex vulnerabilities such as
CSREF or logic inconsistencies are missed and a more sophisticated
approach is needed. Deemon is a tool designed by Pellegrino et
al. and leverages predefined user action scripts to collected dy-
namic execution traces, session-, and HTTP-communication. Based
on the collected data they build a deep model of the underlying
functionality to detect aCSRF vulnerabilities [8].

McAllister et al. also leverage user interactions and collect HTTP-
communication to improve the testing depth for specific use cases
of a given web application. Using this methodology they are able
to improve the detection rate for reflected and stored XSS vulnera-
bilities [9].

Pellegrino et al. address logic vulnerabilities in web applica-
tions by utilizing captured network traces to identify underlying
application behavior using heuristics and then to be tested using
specifically generated automated tests [10].

All the listed publications and tools on automated testing share
an automated approach for detection and testing of vulnerabilities
with RaccooN. Additionally, leveraging user actions to improve
testing depth as well as to achieve automation is an approach that
Raccoon shares with the work. However, none test for GRC related
vulnerabilities and, thus, RAccoon stands apart in this aspect.

Raccoon: Automated Verification of Guarded Race Conditions in Web Applications

User Server Database
request:
—_— >
use voucher 1234 SQL:

e
cur_value of 1234

cur_value is $120 cur_value > 0 = True
B

SQL:
>
set 1234 to $0
SQL:
«—=
response: Done
«oPOE
OK
request:
—_—
use voucher 1234 SQL:
>
cur_value of 1234
SQL:
response: cur_value is $0 _ir;va\ue > 0 = False

voucher used up

(2)

SAC *20, March 30-April 3, 2020, Brno, Czech Republic

User Server Database
request:
i —
use voucher 1234 SQL:
request: cur_value of 1234
—_— .
use voucher 1234 S—>QL'
cur_value of 1234
SQL:
cur_value is $120 cur_value > 0 = True
sQL: |
cur_value is $120 |cur_value > 0 = True
SQL: —
set 1234 to $0
SQL:
set 1234 to $0
SQL:
. —
response: Done
oK SQL:
response: W—
oK
(b)

Figure 1: (a) The process as expected by the developer: The first request reduces the voucher amount to $0 and the second
request fails when reaching the check. (b) The behavior in the presence of insufficient synchronization. Both concurrent
requests for the voucher usage go through without problem. The black horizontal bar shows the point where the “if cur_value >
0” guard is reached and it becomes obvious that, opposed to (a), both processes reach the guard with a value of $120 due to

interleaving,.

3 GRC in Web Applications

We start this section with an overview of the mismatch between
the expected execution of a code piece by the developer and the
deployment reality of web application code that leads to the vul-
nerability of concern. Consecutively, we follow up with a precise
description of the class of race condition we want to detect and
verify.

3.1 The Web’s Hidden Concurrency

In the context of developing web applications, a clash exists be-
tween the dominant programming model, that creates an illusion
of sequentiallity, and the execution environment of web applica-
tions, that generally is highly concurrent and hides potential side
effects of simultaneous access to the database layer. In this section,
we explore this general mismatch of the web’s programming and
execution model. Then, in the subsequent section, we show how
unhandled concurrency can potentially lead to inconsistencies in
the application’s data.

Expectation of Synchronicity Most web applications are run
on a highly concurrent execution platform. A web server is de-
signed to handle as many concurrently incoming HTTP requests as
possible. With the notable exception to the single-threaded NoDE.Js,
the majority of web servers realize this through spawning multiple
workers, each handling a single incoming HT TP request. Workers
operate in the same shared environment and have access to a set
of shared resources, such as the server’s file system and connected
database(s).

These highly concurrent execution characteristics of web ap-
plications are not reflected by the dominant programming model:
Most web applications are written in scripting languages, such as
PHP or Python, often using application frameworks, such as Sym-
fony* or Zend® that abstract away the program flow even more.

4https://symfony.com/
Shttps://framework.zend.com/

Writing classic web code using these tools creates the illusion that
the current script runs in isolation — an incoming HTTP request
triggers the execution of a given web script, that is single-threaded,
running from the beginning of the script until its termination, while
accessing the server’s storage resources sequentially in the process.

Nothing in the code suggests, that the currently running script is
not the only code executed at this moment and during development
and testing time this assumption is correct. Hence, the expectation
of the execution of a piece of web application code is different
to its productive execution: most web servers allow concurrent
interaction with the same use case (i.e., the same code segment) at
the same time.

Transparent Handling of Concurrency Server-side program-
ming languages do not have primitives to handle concurrency trans-
parently. They hand concurrency handling or the lack thereof to
the developer. Integrity and atomicity when accessing resources
has to be guaranteed by the developer using mechanisms that are
not language dependent, but depend on the resource.

Most modern SQL databases provide a construct called transac-
tion that allows grouping multiple queries into an atomically exe-
cuted sequence. They often also consider each query to be atomic
as long as the query is not otherwise included in a transaction.
Consequently, errors due to concurrent query execution conflicting
do not occur. However, the order of execution of concurrent queries
not in transactions is not guaranteed by the database. This may
create the false idea that concurrency is not a problem as reasoning
about possible different sequentializations of concurrent database
queries and their outcome is highly unintuitive.

The described circumstances lead to web applications that do not
take care of concurrent database accesses properly. This can lead to
requests to the same resource having unexpected interleavings of
their read and write queries that leave the affected database entity
in a valid yet unexpected state. Such phenomenons may represent
exploitable behavior with security implications.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

def use_voucher (cur_price, voucher_id):
cur_value = get_voucher_value(voucher_id)
if cur_value > 0:
if cur_value >= cur_price:

new_v = cur_value - cur_price
new_price = 0
else:
new_v = 0
new_price = cur_price - cur_value
end

update_voucher_value(new_v, voucher_id)
return new_price

Figure 2: A simplified example of code using a voucher
in a eCommerce paying process. The sub functions
get_voucher_value and update_voucher_value both entail a
SELECT and UPDATE query to the underlying database
system respectively

3.2 Race Conditions in Web Applications

The execution of a program typically begins from a main func-
tion. However, web applications do not have a similar concept of
main function and the web server calls specific functions upon a re-
quest. Consider for example Figure 1a representing the client-server-
database interaction of the code show in Figure 2. It represents the
execution of two requests to URL https://server/use_voucher
providing a voucher id and the current shopping cart value. The
request results in the execution of a function that retrieves the
remaining amount of the referenced voucher, decreases the remain-
ing amount of the voucher, and reduces the shopping cart price
accordingly. Web servers can potentially receive thousands of such
requests at the same time resulting in multiple concurrent execution
of the use voucher function.

As detailed above, a typical web server receives each such con-
current request and delegates the execution and response to inde-
pendent workers. Usually no means of synchronization between
workers exists and concurrent access to data stored in a database
eventually occurs. This is the point where problems may arise as
soon as concurrent requests read and write the same resource in
the database. If the processing logic or database schema does not
enforce synchronization different interleavings of the concurrent
reading and writings can lead to different yet still valid results in
the database. Depending on the context this presents vulnerable
behavior. Figure 1b presents such a context.

If the server processes the requests concurrently it might happen
that all requests reach the functionality to read the voucher value
before any of the other processes reach the functionality to update
its value. Thus, all processes work with the full initial value and the
voucher is applied multiple times, possibly in excess to its value.

This goes against the expectations of the developer as the trivial
and expected requests result is that server processes the requests
sequentially resulting in an appropriately reduced end price of the
shopping carts and a reduction of the voucher not exceeding its
initial value.

This mismatch between expectations and reality occurs as the
guard protecting the application logic from overspending depends
on the value of the reading query. However, the reading query

Simon Koch, Tim Sauer, Martin Johns, and Giancarlo Pellegrino

for the guard assumes that there is no other code about to write
to the value, which in this circumstance is false as multiple other
processes are in the guarded code segment. The result is a guarded
race condition vulnerability.

3.2.1 Guarded Race Condition: With respect to the example we
define a guarded race condition (GRC) as:

(1) A non-atomic sequence of reading and writing of the same
entity in a database.

(2) Triggered by a single HTTP request done multiple times
concurrently

(3) The application logic guards the writing of the entity based
on a decision on the return value of the reading query

Even though guarded race conditions do not represent all possi-
ble race conditions they are nontrivial and security relevant as our
results in Section 6.4 show. Race condition vulnerabilities that do
not fit our definition are out of scope. We consider verification of
them future work.

3.3 Detection alone is not enough

Previous approaches such as from Paleari et al. [2] and Warsza-
wski et al. [1] only addressed the detection. Either approach utilizes
limited or no knowledge about the database schema and a log of
the executed queries. This is not sufficient to ensure that a detected
vulnerability is actually a vulnerability. The underlying database
schema could provide a working protection using unique keys or
triggers. Additionally, the web application logic by itself could pre-
vent the vulnerability, e.g., by utilizing file handlers, which usually
have unique access locks, effectively providing a working protec-
tion against any race condition during the time the file is open.
Yet, such indirect protection is highly complex to infer and not
considered in the existing approaches. Consequently, a tester has to
verify the detected vulnerabilities themselves, which they currently
have to do by hand as no methodology for automatic verification
exists.

3.4 Verification Challenges

GRCs are notoriously difficult to verify at run-time as timing
issues make testing vulnerability candidates error prone and unre-
liable. Those timing issues arise due to the narrow time window
between queries and the random delays introduced by the trans-
portation layer between client and server. Consequently, conduct-
ing verification tests by hand is a time-consuming and error prone
activity. Consequently we need to develop a reliable automation
solution.

Additionally, even assuming the existence of a reliable exploita-
tion method we still have to solve the question on how to distin-
guish between resulting anomalous behavior and non-anomalous
behavior. Previous work relied on visual confirmation for verifi-
cation. This is not a feasible approach for an automated solution.
Consequently, we also need to develop an automatic verification
solution.

A final challenge in the detection of GRCs comes with the obser-
vation that a tester needs both, a thorough understanding of the use
cases of a given web applications (e.g., coupon usage limits) and a
thorough understanding of GRCs, to be able to successfully identify
and test critical segments of a business process. Either knowledge

Raccoon: Automated Verification of Guarded Race Conditions in Web Applications

base is limited to distinct sets of people, the developers of a given
web application and security experts. However, the intersection
between both sets is sparse if not disjunct. Thus, it is important to
find a testing solution that eliminates one of the two prerequisites
to enable and increase future GRCs testing.

4 Methodology Overview

In this section we describe our novel methodology to automati-
cally detect and verify GRCs with minimal security understanding
and input required from a potential user. We intend the methodol-
ogy to be used alongside continuous integration testing. A tester
may simply reuse the user traces for the already tested use cases and
leave everything else to the computer running our methodology.

We separate our methodology into four distinct phases that are
logically separate and are performed in succession:

(1) Setup - preparing the web application for the test process

(2) Data Gathering — gathering the data required for detection

(3) Data Analysis — evaluating the gathered data to detect GRC
vulnerabilities

(4) Verification - verifying a vulnerability against the running
web application

A web applications usually contains multiple use cases with
their own user traces to be tested. The same setup is reusable for
multiple tests. Consequently, a future user only has to execute
the Setup Phase once on the web application. The remaining three
phases (data gathering, data analysis, verification) however have
to be done for each distinct use case in form of user traces. The
remainder of this section is structured in the same order as the
listed phases lead by a section describing the inputs required.

4.1 Inputs

Our approach requires as input a server hosting the web appli-
cation as well as a user traces.

User traces: A user trace is a collection of user actions (e.g., a
click, filling in a form field) that are commonly used in security test-
ing [11]. A user trace is a step by step description of a use case (e.g.,
login) against the web application’s GUI as displayed in the browser.
Previous automated security testing solutions demonstrated the
advantage of leveraging such traces for security testing [8, 11]. A
tester records the user actions of a user trace and the actions can
be exactly repeated without additional user input required.

Repeatable trace-driven testing: To enable reliable, side-effect
free and repeatable security testing, it is important that we execute
the recorded traces on a web application with a well defined state,
that is the same for all relevant test runs. We solve this problem
by running the web application’s server-side portion in a virtual
machine with the ability to take snapshots. Through restoring the
application under test to a specific, clean snapshot before running
a test, we make sure that the results of the test can be cleanly
compared to the outcome of previous tests and all observed, server-
side state changes between the test-runs correspond directly to the
undertaken test actions.

4.2 Setup

Before we start any testing on the web application, we have to
configure the web application in a way that allows us to collect
SQL query logs on a request by request base. After we finish the

SAC *20, March 30-April 3, 2020, Brno, Czech Republic

configuration we take a testing snapshot, representing the running
web application.

Sl —]
—_ 2 N’

Figure 3: The user action chain is executed sequentially
against the web application and the occuring sql log data is
collected.

4.3 Data Gathering

We need to get a baseline of the applications default behavior
if no GRC is triggered. To achieve this we take the provided user
trace as well as the web application (in the testing state) and run
the user trace consecutively multiple times against the GUI without
restoring the snapshot in between. We extract the SQL query logs
and store them on a request by request base.

4.4 Data Analysis

GRCs are based on requests and the interaction of the same SQL
query pairs (a reading and a writing query) in the different requests.
Consequently, we choose HTTP requests and the corresponding
SQL query logs as the inputs for a used detection algorithm. This
also matches with the already proposed detection approaches by
Warszawski et al. and Paleari et al. [1, 2]. The output expected from
a chosen detection algorithm is a list of tuples containing the URL
of the request as well as the query pair forming a possible GRC.

‘ = =
= =

Figure 4: Running multiple concurrent user traces against
the web application. An active query delay is active to force
the exploitative interleaving needed to validate the GRC.
The occuring sql log data is collected

4.5 Verification

We now have a set of detected potential vulnerabilities that need
verification. This process requires triggering an anomaly using a
detected vulnerability and finally verify or reject the vulnerability
based on the gathered data.

We first describe how we trigger the potential vulnerability and
then how we verify the result.

Triggering the Vulnerability: Triggering of GRCs entails run-
ning the user trace concurrently multiple times against the GUI in
separate browser instances to trigger the potential vulnerability.
However, as browser automation is coarse in controlling the execu-
tion times of steps and GRCs are hard to exploit reliably we cannot
expect to trivially and reliably achieve the required interleaving
due to the tight timing window for GRCs.

To reliably achieve interleaving we programmatically introduce
a delay before the writing query of the suspected SQL query pair.

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

This increases the time between the reading and writing query.
Thus, opening up a large time window for the interleaving to occur
in contrast to the minimal time window usually encountered. This
ensures that exploiting a vulnerability becomes feasible up to being
unavoidable.

Due to our previous configuration the server collects SQL query
logs during this process on a request by request basis. We want to
stress that extending the time window only increases the likelihood
of achieving interleaving but does not open up a vulnerability if
none existed before (e.g., due to unique keys or file handlers).

Verification Process The verification process requires an algo-
rithm - the oracle - that either confirms or rejects the vulnerability
based on the gathered data.

After we tried to trigger a single vulnerability the oracle gets
the data gathered and the potential vulnerability. The oracle then
tries to verify the detected vulnerability and either outputs success
or failure.

Oracle: Web applications heavily depend on their underlying
database. They require the database to maintain a state across
requests and constantly read and write data from the database based
on the processing logic for a request. We rely on this dependence
for our oracle that verifies if a detected GRC is exploitable.

Recalling our definition of GRCs, a GRC vulnerability requires a
writing query whose execution is guarded by the result of the corre-
sponding reading query. Thus, if a previous writing query changes
the value to a value that triggers the guard, no further writing
query is executed. Resulting in further requests not encountering
the writing query in their log. This is the behavior encountered
during consecutive execution. Hence, if the query is executed more
often when we forced interleaving during concurrent execution we
can conclude that the vulnerability is verified.

Molding this into a process leads to an oracle that counts the
occurrences of the guarded writing query in both the consecutive
execution and in the concurrent execution with forced interleav-
ing. If the concurrent execution leads to a higher count our oracle
considers this a verified GRC.

Splitting this into a step by step process means that the oracle
takes the SQL query logs gathered during the data gathering phase,
the SQL query logs gathered during the attempt on triggering the
vulnerability, and the detected potential vulnerability in form of
the corresponding request URL and the query pair consisting of a
reading and writing query. The steps of the oracle then are:

(1) The oracle reduces the set of query logs to the logs corre-
sponding to the request that contained the detected potential
vulnerability.

(2) The oracle counts the amount of occurrences of the writing
query in the subset extracted from the consecutive and the
concurrent execution data.

(3) The oracle compares both counts to each other and confirms
a vulnerability if the count in the concurrent execution is
higher than in the data set collected during consecutive
execution.

Intuitively, a higher count during the attempt to trigger the
vulnerability means, that a guard that works in case of consecutive
execution does not reliably work under concurrent execution and
thus matches our definition of a GRC.

Simon Koch, Tim Sauer, Martin Johns, and Giancarlo Pellegrino

5 Implementation

To show that our presented methodology is feasible we imple-
mented a prototype Raccoon (race condition verification). As al-
ready indicated in the previous section we intended Raccoon to be
integrate into existing testing procedures. A tester may simply use
the user traces for the continuous integration tests already existing
and hand them over to Raccoon to perform the testing.

Our proposed methodology is applicable to any web application
deployment stack that uses a database to store permanent data.
However, our implementation focuses on web applications based
on the LAMP-Stack (Linux, Apache, MySQL, PHP) as this represents
a popular web application deployment method [12-15].

We discuss the implementation of Raccoon along the same
outline we presented our methodology in. We start with the input
requirements (5.1), continue with the setup (5.2), data gathering
(5.3), data analysis (5.4), and conclude with the verification (5.5)
that includes a detailed description of the testing and the oracle.

5.1 Input

As defined in our approach the input to RAccooN are user traces
and restorable web applications.

User Traces We chose Selenium as our automation technique as
it provides a convenient interface for trace recording [16]. A tester
can use the Selenium IDE, perform the required steps for the use
case of interest on the web application and record them without
any understanding of Selenium or browser automation [17]. The
tester then saves the recorded steps in a file via the IDE and passes
them on to Raccoon.

In case the application logic requires different input values for
form fields (e.g., user login values) to run the same action chains
concurrently on the same web application (e.g. to test the checkout
processes) the tester has to adapt the files appropriately. During this
process it is important to only change inputs that are nonessential
to the testing. E.g. if one tests the amount of login attempts a user
has it does not make sense to use different users. If one tests whether
the same voucher can be overspent some applications require to
use multiple different users — for example if the application ties the
shopping baskets to a user and not the session.

Web Applications Our approach requires web applications to
be restorable to previous states. We chose to use Virtual Machines
(VMs) to achieve this. Our chosen hypervisor is Virtualbox® that
supports all requirements previously stated. The used Virtual Ma-
chines have the LAMP stack and the web application already in-
stalled.

5.2 Setup

During setup Raccoon enables Xdebug in the Apache Server.
Dumps generated by Xdebug contain every function called during
the execution of a PHP script including their parameters. Thus, they
provide a request-by-request log of all executed SQL queries. The
Apache Server ties the Xdebug dumps to specific requests using
unique ids and a log that links each id to the corresponding request
URL.

Additionally, Raccoon inserts the MySQL-proxy’ in between
the web application and the MySQL server instance. This proxy

®https://virtualbox.com
"https://github.com/mysql/mysql-proxy

Raccoon: Automated Verification of Guarded Race Conditions in Web Applications

becomes relevant during the triggering of the potential vulnerability
but lays dormant during the data gathering.

To conclude the setup RAccooN takes a testing snapshot repre-
senting the fully configured state of the machine.

5.3 Data Gathering

To gather all the required data RaccooN executes the recorded
Selenium user traces against the web application GUI, retrieves and
stores all collected data (i.e., Xdebug dumps, Apache id logs).

Raccoon first executes the given user action chain two times
against the web application GUI restoring the testing snapshot after
each execution®.

RaccooN then executes the given user action chain 7 times
consecutively against the web application GUI without restoring
the testing snapshot in between. Then Raccoon restores the testing
snapshot.

9

5.4 Data Analysis

Equipped with the gathered data RaccooN can now approach
the detection of GRCs. We chose the algorithm proposed by Paleari
et al. for RaccooN. As we designed the detection interface of our
approach around the two already existing approaches, the chosen
approach works trivially with our collected data.

The algorithm proposed by Paleari et al. takes a list of SQL
queries and searches for pairs of queries whose read and written
columns intersect. They call such queries interdependent and con-
sider them to be possible race condition vulnerabilities. To reduce
the amount of falsely detected vulnerabilities Paleari et al. also pro-
pose a post processing. The post processing tries to infer whether
data sets affected by either query actually intersect. This can only be
done for simple cases such as mutually exclusive WHERE clauses
and is not implemented by us as we rely on our verification to
remove/detect falsely detected vulnerabilities. For a more in-depth
explanation of the algorithm we refer the reader to the original

paper [2].

5.5 Verification

The verification now takes all the vulnerabilities detected by the
Paleari et al. algorithm, tries to trigger them, and then to pass on
the collected data to a verification oracle.

However, as we limit ourselves to the subclass of GRCs Raccoon
ignores all previously detected race conditions that are not part of
the defined subclass. To determine to which part of the dichotomy
a detected vulnerability belongs Raccoon takes our consecutively
gathered data and count whether for each consecutive execution
of the user trace the writing query was executed. If this is the case
it indicates that the writing query is not protected by a guard and
thus Raccoon discards the detected vulnerability as it is out of
scope.

Triggering the Vulnerability RaccooN now attempts to trig-
ger each unique detected vulnerability that still remains. To achieve
this RaccooN resets the machine to the testing state and runs the
user trace concurrently against the web application.
8This step is not included in the methodology section as it is not strictly necessary
for our methodology to work. We encountered web applications that used random
values (e.g., timestamp, session) in their URL and we use the data collected during the
isolated two time executions to identify random elements in URLs.

9We settled for 7 as any higher number ran into frequent connectivity issues with
Selenium. Based on our experience this is sufficient for verification of vulnerabilities.

SAC *20, March 30-April 3, 2020, Brno, Czech Republic

The interleaving required for exploitation is achieved by insert-
ing a delay in front of the writing query of the scrutinized vul-
nerability using MySQL-Proxy. The MySQL-Proxy accepts a user
defined Lua script that allows for the customization of behavior for
each intercepted query. Thus enabling RaccooN to transparently
inject a delay when needed. We chose the delay to be sufficiently
large to guarantee interleaving. After the process is done Raccoon
extracts the collected data is extracted and passes them on to the
oracle.

The Oracle: Raccoon passes the vulnerability, the consecu-
tively collected data set, and the data collected during the verifi-
cation attempt on to the oracle which is a subsystem of Raccoon.
The oracle then performs the three actions as listed in Section 4.5
to verify that a candidate is a GRC.

(1) The oracle reduces the set of queries by bucketing the col-
lected query logs according to the request URLSs they are
associated with. This happens for both the data set of the
consecutively and concurrently executed user traces.

(2) The oracle counts the writing query of the candidate in both
the bucket for the consecutively and concurrently executed
user traces.

(3) If the count of the delayed query is higher in the consecu-
tively executed user trace the oracle confirms a GRC.

Bucketing The oracle uses the URL of an HTTP request to
assign buckets to the corresponding logged SQL queries. However,
some URLs may contain volatile tokens (e.g. sessions, timestamps).
Due to this, SQL queries belonging to the same bucket are associated
with superficially different URLs. Consequently, the oracle needs to
disregard all values of volatile elements contained in a given URL.

To be able to recognize volatile URL elements Raccoon collected
all the requested URLs in a special log for the two user trace ex-
ecutions with restoring the snapshot in between to ensure equal
logs (Section 5.3). The oracle cuts each log to a format where only
the part representing a HTTP-Request remains. The next step of
the oracle is to compare the lines of the two logs and check for the
same amount of variables.

If the same amount of parameters is present the oracle compares
the parameter values name-based to check whether the variable
varies in value. Thus, the oracle is able to tell whether a parameter
value varies between requests. This enables the oracle to bucket
queries based on request URLs.

Counting After bucketing the oracle iterates over all queries
contained in the bucket belonging to the request URL associated
with the scrutinized detected vulnerability. The oracle removes all
assumed non-static elements of the query, the elements on the right
side of the equal sign, to ensure that volatile query elements such as
timestamps do not disturb the comparison. Then the oracle counts
the occurrence of the delayed writing query.

6 Experiment

To show the performance of Raccoon and, thus, practicality of
our proposed approach we applied Raccoon on four different web
applications and ten use cases. During this we discovered six GRCs
with different security implications.

We first discuss the test bed, configuration, the chosen web
applications, and use cases. Consecutively, we report the results of

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

the experiments and conclude with the lessons learned during the
application of Raccoon.

6.1 Selected Web Applications

We selected a set of eCommerce and Forum web application
as both contain use cases that are not supposed to be executable
multiple times successfully. For each application type we chose a
set of use cases to show that Raccoon is able to be applied across
applications and use cases. Each use case represents an abstract
action regularly performed using the web application. Additionally,
each chosen action is a use case that a user should be unable to do
multiple times successfully, thus, actions such as using the search
or simply clicking a link were not of interest.

Not every user trace chosen by us has the potential to encoun-
tered high severity vulnerabilities. We consider not focusing on
potential high severity vulnerabilities to increase our testing range
to be an acceptable trade off as our focus was on validating our
methodology.

6.1.1 eCommerce web applications offer potential customers a
select set of goods. A user has a virtual shopping basket they can
use to collect goods they would like to purchase. After finishing
selecting goods the user proceeds to the checkout to pay for the
goods. The eCommerce web applications we tested all required that
a user has an account to finish the checkout process to provide
payment details as well as shipping address. We isolated three
potential use cases in an eCommerce application:

Use Case login To protect a user account against multiple illicit
attempts of login (i.e., bruteforcing a password) a web application
should provide an overall limit of tries a user has to enter the
correct password before they have to wait for a cool down period. A
malicious user being able to extend that limit is perilous as previous
research has shown that a seemingly low amount of tries can already
result in a high success rate [18].

Use Case Coupon/Voucher eCommerce software allows the dis-
tribution of gift vouchers or coupons. Such a voucher or coupon
allows customer to reduce the payment for a shopping cart by a
fixed amount. As each such voucher is paid for by either the cus-
tomer in case of a purchase or by the owner of the eCommerce
store in case of a promotion. As a consequence the amount of uses
is limited. This means that a given voucher cannot be used for more
money than its worth. Consequently, it is to be expected that in case
of multiple usages that eventually exceed the worth of a voucher
the web application refuses to finalize the purchase.

We selected OpenCart (Version 3.0.3.1)'%, Abantecart (Version
1.2.14)11, and Oxid (Version 6.0.2)!? to represent the eCommerce
category.

6.1.2 Forum web applications offer the means for intellectual ex-
change between users. A forum usually has multiple different topics
in which a user can create separate discussions called threads. Each
thread consists of multiple posts by different users in which a user
presents their opinion on the topic or responds to a previous post
in text form.

Osee https://www.opencart.com/
Hsee http://www.abantecart.com/
2see https://www.oxid-esales.com/

Simon Koch, Tim Sauer, Martin Johns, and Giancarlo Pellegrino

Use Case login A forum usually requires a user to log in to take
part in discussions and similar to eCommerce software a forum
should limit the amount of login tries to protect against bruteforcing
of a password.

Use Case flooding Even when logged in, a user is usually limited
in the amount of new topics he can create or PMs he can send in
a given amount of time. This is meant to protect the forum from
malicious users and spammers that try to dominate the list of recent
topics with their spam or try to harass another user by flooding
their inbox with messages. Both actions have a disruptive potential
on the forum community.

We selected MyBB (Version 1.8.15)!% to represent the forum
category.

6.2 Testbed Preparation

We conducted the tests on an Ubuntu 16.04 running on an AMD
Ryzen 7 Pro 1700 with 3.7 GHz, 32 GB RAM, and a SSD. As servers
hosting the applications we utilized virtual machines provided by
Bitnami. Bitnami provides ready-to-go VMs containing a full LAMP
stack and a fully functional, pre-configured web application!4.

Prior to start testing we had to modify the Bitnami provided
machines slightly to accommodate the tests done by Raccoon. We
collected those modifications for the used Bitnami machines into a
setup script to allow for easier reproduction.

We changed the connection configuration between the web ap-
plication and the shipped dbms to inject the MySQL-Proxy. Addi-
tionally, we change the Apache configuration to give each Xdebug
execution trace dump a unique id that is stored in a log associated
with the corresponding request URL. Both changes are required for
every web application regardless of whether it is Bitnami provided
or not. A further configuration change touches the setup of the web
server. We need to ensure that sufficient concurrency is possible.
Apache can limit the maximum amount of concurrent requests
(i.e., maximum amount of running workers) to allow for resource
management on smaller machines. We increased the limit to 10
by changing the corresponding configurations for Apache and the
PHP CGI module. Please note that this change does not introduce
the vulnerability as it can be expected that larger set ups already
have this limited extended to an even higher amount of workers as
reducing the limit to one — which would negate any possible race
condition vulnerability — would significantly degrade the machines
performance in a high traffic context.

We additionally prepared the web application itself when neces-
sary. This involved actions such as creating non-admin accounts, de-
creasing the posting limits for forums, or generating a coupon/voucher
for the eCommerce web applications. Those actions were necessary
as the Bitnami provided machines were blank slates, in a continuous
integration environment we expect that such pre testing prepara-
tion already has been done.

6.3 Detected Vulnerabilities

The detected vulnerabilities range in severity, and we classify
them as either minor, medium, or significant:

Send PM/Create New Thread We consider the flooding cir-
cumvention in MyBB to be of minor significance as it does enable

Bsee https://mybb.com/
Yhttps://bitnami.com/

https://www.opencart.com/
http://www.abantecart.com/
https://www.oxid-esales.com/
https://mybb.com/

Raccoon: Automated Verification of Guarded Race Conditions in Web Applications

SAC *20, March 30-April 3, 2020, Brno, Czech Republic

Use Case ‘ Generated Tested ‘ Oracle Data Consecutive Data Test Time ‘ Pos. ‘ GRC
login 2 1 3 min 35 min 18 min 1 [
OpenCart (Version 3.0.3.1) voucher 42 2 18 min 244 min 207 min 1 []
coupon 42 2 17 min 394 min 230 min 1 []
login 5 0 6 min N/A N/A 0 @]
MyBB (Version 1.8.15) create new thread 32 5 17 min 360 min 244 min 3 []
send pm 66 4 14 min 313 min 171 min 2 [)
login 0 0 6 min N/A N/A N/A | OF
Oxid (Version 6.0.2-0) voucher - - - - - - O**
coupon 27 2 20 min 210 min 192 1 [)
login 0 0 8 min N/A N/A N/A | O
AbanteCart (Version 1.2.14) voucher - - - - - - o™
coupon 61 1 30 min 395 min 24 min 0 O

Table 1: An overview showing the results. Generated and Tested refer to generated and tested candidates respectively. Oracle
Data refers to the time required to conduct the data gathering for the oracle. Consecutive Data refers to the time required
to conduct the consecutive data gathering. Test Time refers to the time needed to finish all tests. Pos refers to the amount
of verified GRC vulnerabilities by Raccoon out of all the tests. The column GRC shows whether the use case was actually
vulnerable. Rows completely in cursive show previously known vulnerabilities used as a ground truth.

* The action is not protected against multiple login tries
** This use case did not exist

a malicious user to flood a forum or a PM box of another user.
This may disrupt the community until the culprit is banned by
administrators but does not result in direct financial loss.

Login Bruteforcing a login can turn out to be significant but
requires a certain amount of tries that are hard to fit within the
short timing window required to exploit GRC vulnerabilities. Con-
sequently, additional amplifying circumstances are required to turn
this vulnerability into a threat model (e.g., knowledge of a small
selection of possible passwords used by the user). We consider this
issue to be of medium significance.

Coupon/Voucher The voucher/coupon overspending vulnera-
bilities are highly significant. Any exploitation has a direct financial
impact for the web application owner. Additionally, the tested web
applications perform the check for the voucher applicability before
the complete checkout and thus an attacker is able to simply restage
the attack in case of a failure without significant overhead.

The OpenCart vulnerability for both voucher and coupon were
already detected by previous work and reported to the developer [1,
7]. All other vulnerabilities were reported by us to the developers.

6.4 Discussion

Raccoon verified vulnerabilities in MyBB, OpenCart, and Oxid
and we give a summary of the conducted tests and related meta
data in Table 1. During the tests we encountered multiple query
pairs that exhibited anomalies during forced interleaving, and we
encountered high execution times due to relying on Selenium.

6.4.1 Multiple Query Pairs: When looking at the listed use cases
such as flooding a forum, one would expect a single query pair
exhibiting anomalous behavior with the pair consisting of one
query extracting the last time of the last flood protected action
and one query updating that value. This was not the case for the
flooding use cases in MyBB. The use case showed multiple query
pairs that exhibited a higher occurrence during forced interleaving.
We also encountered multiple query pairs during testing of Oxids
coupon.

MyBB - Flooding: Both tests for flooding prevention had multiple
queries that exhibited the hallmarks of a GRC. Not all queries in
the PM flooding use case were linked to the use case at hand and
we were not able to infer any security implications besides for the
query pair directly related to the use case. Nonetheless, the query
pairs showed the hallmarks of a GRCs and thus should be addressed
by a developer.

For the creation of a new thread, however, both query pairs were
related as one query pair represents the creation of the new thread
and one represents the creation of the corresponding messages in
the database. A delay between either query pair lead to the flooding
detection being circumvented.

Oxid - Coupon: We encountered two query pairs when testing
the Oxid coupon use case. One query pair was related to the Oxid
coupon. The second query pair was related to Oxid internal SEO
optimization. We were unable to link it to any security sensitive
behavior.

6.4.2 High Execution Times: Relying on Selenium comes with the
drawback that Selenium is unable to recognize when the browser
performs background requests such as AJAX calls. This leads to
Selenium trying to perform an action, such as clicking a button, that
relies on interface elements that the browser has not yet loaded. This
in turn resulted in Selenium aborting the execution. To counter this
detrimental behavior we introduced long waiting periods between
each step of the user trace. This ensures that all background requests
had finished before performing the next step.

The result of this precaution is that depending on the user trace,
RAaccooN requires a significant amount of time to run a single
user trace. Consequently, at a first glance, it seems that Raccoon
requires a long time to complete testing a web application, possibly
without actionable results.

This is a misconception. RAccooN bases its testing on the de-
tected vulnerabilities extracted after running the user trace twice
(gathering the data for the url parameter oracle). If no possible GRC
is detected, Raccoon does not proceed further and the tester can

SAC ’20, March 30-April 3, 2020, Brno, Czech Republic

proceed to the next user trace. If, however, possible race condition
candidates are detected, RACCOON starts its consecutive execution
data gathering to determine whether any of the detected possi-
ble vulnerabilities fit the GRC definition. Any detected candidate
that does not appear to fit Raccoon eliminates as well. In the end
Raccoon only tests strong candidates for GRC which reduces the
overall runtime. The final runtime is admittedly not that low, but
as our results show, leads to verified GRCs - some with serious
financial implications.

It is possible that not all verified GRCs are security relevant.
However, this assessment cannot be done by a program and even if
there is no immediate security implication a GRC is still unintended
behavior that a developer needs to address. Thus, time spent on
verifying strong GRC candidates is time well spent in our opinion.

6.5 Lessons Learned

We tested four web applications and ten use cases. For Open-
Cart every single use case was vulnerable to GRC and Oxid and
MyBB have at least one vulnerability. Even though we did focus
on potentially vulnerable use cases, we were surprised by the high
amount of vulnerabilities we detected. Additionally, researchers
reported the OpenCart voucher vulnerability to the developer over
a year ago [1] and the coupon vulnerability even earlier [7]. This
shows that GRC are not taken as a serious threat by developers or
the necessary skills to properly fix the issues are not present.

Another lesson we learned was that it is possible that multiple
query pairs lead to security relevant anomalous behavior if they
interleave for a single use case. We encountered such an occurrence
in MyBB and a delay of the detected query pairs can lead to an
exploitable vulnerability. Given that execution times for queries add
up it becomes obvious that the more vulnerable query pairs there
are the easier it becomes to achieve interleaving for successfully
triggering the vulnerability.

7 Future Work

Applying RaccooN showed drawbacks and limitations that we
intend to address in the future. This includes improving the range
of testable applications.

Raccoon is limited to test GRCs (Section 3.2.1). This does not
incorporate every possible race condition manifestation. Thus, ex-
tending the validation algorithm and oracle to cover every race
condition type would greatly increase the usability and coverage
of Raccoon.

Finally, RAccooN is currently only designed to cover LAMP based
application. LAMP, however, is not the only configuration for web
application deployment and a big ecosystem not relying on PHP
or even relational SQL-based databases exists such as Ruby based
server side code or the usage of NoSQL databases. Consequently,
transferring the approach implemented by RaccooN to cover more
database types (e.g., NoSQL) and different server side languages
would improve the applicability of Raccoon in both research and
security testing alike.

8 Conclusion

We presented an automated methodology on verifying GRCs
and its implementation in form of the tool Raccoon. Our approach
enables testers and web application designers alike to perform
automated testing for GRCs.

Simon Koch, Tim Sauer, Martin Johns, and Giancarlo Pellegrino

Raccoon only requires a tester to provide a web application as
well as the use case that they want to test in the form of a Selenium
script. Thus, we extended the portfolio of existing automated web
application testing tools to account for GRCs.

We applied Raccoon on four web applications and ten use cases.
We were able to identify six vulnerabilities of which four where
previously unknown.

Given the potentially high impact of GRCs and their apparent
prevalence, it stands to reason that this vulnerability class is in dire
need of increased attention.

9 Acknowledgments

This research was supported by the Lower Saxonian Ministry
for Science and Culture as part of the research program MOBILISE
(Mobility in Engineering and Science).

References

[1] T. Warszawski and P. Bailis, “Acidrain: Concurrency-related attacks on
database-backed web applications,” in Proceedings of the 2017 ACM International
Conference on Management of Data, 2017. [Online]. Available: http://doi.acm.org/
10.1145/3035918.3064037

R. Paleari, D. Marrone, D. Bruschi, and M. Monga, “On race vulnerabilities in
web applications,” in Detection of Intrusions and Malware, and Vulnerability
Assessment: 5th International Conference, DIMVA 2008, Paris, France, July 10-11,
2008. Proceedings, 2008. [Online]. Available: https://doi.org/10.1007/978-3-540-
70542-0_7

[3] “Owasp:top 10 project” accessed 2019-09-05. [Online]. Available: https:
/lwww.owasp.org/index.php/Category:OWASP_Top_Ten_Project

[4] L. Constantin, “Withdrawal vulnerabilities enable bitcoin theft
from flexcoin and poloniex,” March 2014. [Online]. Avail-
able: https://www.pcworld.com/article/2104940/withdrawal-vulnerabilities-
enabled-\bitcoin- theft-from-flexcoin-and-poloniex.html

[5] E.Hamokov, accessed 2019-09-05. [Online]. Available: https://sakurity.com/blog/
2015/05/21/starbucks.html

[6] P.Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and L. Stoica, “Feral
concurrency control: An empirical investigation of modern application integrity,”
in Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, 2015. [Online]. Available: http://doi.acm.org/10.1145/2723372.2737784

[7] Y. Zheng and X. Zhang, “Static detection of resource contention problems
in server-side scripts,” in Proceedings of the 34th International Conference on
Software Engineering, 2012. [Online]. Available: http://dl.acm.org/citation.cfm?
1d=2337223.2337292

[8] G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow, “Deemon: Detecting
csrf with dynamic analysis and property graphs,” in Proceedings of the 2017 ACM
Conference on Computer and Communications Security, 2017.

[9] S. Mcallister, E. Kirda, and C. Kruegel, “Leveraging user interactions for
in-depth testing of web applications,” in Proceedings of the 11th International
Symposium on Recent Advances in Intrusion Detection, 2008. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-87403-4_11

[10] G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic flaws
in web applications,” in NDSS 2014, Network and Distributed System Security
Symposium, 23-26 February 2014, San Diego, USA, 2014. [Online]. Available:
http://www.eurecom.fr/publication/4207

[11] “Owasp testing guide,” accessed 2019-09-05. [Online]. Available: https:

//www.owasp.org/index.php/OWASP_Testing_Project

“Usage of web servers for websites,” accessed 2019-09-05. [Online]. Available:

https://w3techs.com/technologies/overview/web_server/all

“Usage of server-side programming languages for websites,” accessed 2019-09-05.

[Online]. Available: https://w3techs.com/technologies/overview/programming_

language/all

“Topdb top database index,” accessed 2019-09-05. [Online]. Available: https:

//pypl.github.io/DB.html

“Usage statistics and market share of unix for websites,” accessed 2019-09-05.

[Online]. Available: https://w3techs.com/technologies/details/os-unix/all/all

“Selenium browser automation,” accessed 2018-03-16. [Online]. Available:

https://www.seleniumhq.org/

“Selenium ide,” accessed 2018-06-11. [Online]. Available: https://www.seleniumhg.

org/projects/ide/

D. Wang, Z. Zhang, P. Wang, J. Yan, and X. Huang, “Targeted online password

guessing: An underestimated threat,” in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, 2016. [Online]. Available:

http://doi.acm.org/10.1145/2976749.2978339

[2

[12

[13

[14

[15

[16

=
=

(18

http://doi.acm.org/10.1145/3035918.3064037
http://doi.acm.org/10.1145/3035918.3064037
https://doi.org/10.1007/978-3-540-70542-0_7
https://doi.org/10.1007/978-3-540-70542-0_7
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.pcworld.com/article/2104940/withdrawal-vulnerabilities-enabled-\ bitcoin-theft-from-flexcoin-and-poloniex.html
https://www.pcworld.com/article/2104940/withdrawal-vulnerabilities-enabled-\ bitcoin-theft-from-flexcoin-and-poloniex.html
https://sakurity.com/blog/2015/05/21/starbucks.html
https://sakurity.com/blog/2015/05/21/starbucks.html
http://doi.acm.org/10.1145/2723372.2737784
http://dl.acm.org/citation.cfm?id=2337223.2337292
http://dl.acm.org/citation.cfm?id=2337223.2337292
http://dx.doi.org/10.1007/978-3-540-87403-4_11
http://www.eurecom.fr/publication/4207
https://www.owasp.org/index.php/OWASP_Testing_Project
https://www.owasp.org/index.php/OWASP_Testing_Project
https://w3techs.com/technologies/overview/web_server/all
https://w3techs.com/technologies/overview/programming_language/all
https://w3techs.com/technologies/overview/programming_language/all
https://pypl.github.io/DB.html
https://pypl.github.io/DB.html
https://w3techs.com/technologies/details/os-unix/all/all
https://www.seleniumhq.org/
https://www.seleniumhq.org/projects/ide/
https://www.seleniumhq.org/projects/ide/
http://doi.acm.org/10.1145/2976749.2978339

	Abstract
	1 Introduction
	2 Related Work
	3 GRC in Web Applications
	3.1 The Web's Hidden Concurrency
	3.2 Race Conditions in Web Applications
	3.3 Detection alone is not enough
	3.4 Verification Challenges

	4 Methodology Overview
	4.1 Inputs
	4.2 Setup
	4.3 Data Gathering
	4.4 Data Analysis
	4.5 Verification

	5 Implementation
	5.1 Input
	5.2 Setup
	5.3 Data Gathering
	5.4 Data Analysis
	5.5 Verification

	6 Experiment
	6.1 Selected Web Applications
	6.2 Testbed Preparation
	6.3 Detected Vulnerabilities
	6.4 Discussion
	6.5 Lessons Learned

	7 Future Work
	8 Conclusion
	9 Acknowledgments
	References

