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Chapter 1

The modular isomorphism problem
(MIP)

1.1 What is MIP?

The modular isomorphism problem (MIP) asks the following: Let p be a prime, k a field of charac-
teristic p and let G and H be p-groups. Does kG ∼= kH imply G ∼= H? To our best knowledge, the
problem was first posed by R. Brauer [Bra63]. See [San85], [HS06], [EK11] for some history of the
problem and an overview of most known results.

1.2 The ModIsom package

The package ModIsomExt is an extension of the ModIsom package [Eic19]. ModIsom was used
to study the modular isomorphim problem for groups of order 28 and 36 [Eic08] and 29 [EK11]. For
this purpose so-called canonical forms of the associated augmentation ideals (and their quotients) are
computed, see [Eic08].
ModIsomExt is built on the same ideas, but uses more efficient methods. In particular ModIsomExt
allows to compute quotients of augmentation ideals without first computing the full augmentation
ideal, which is very time and memory consuming. ModIsomExt was used in [MM20] to verify that
there are no counterexamples to MIP for groups of order 37. Moreover ModIsomExt allows an easier
application of the methods directly to groups instead of the GroupId’s, hence making it possible to
work, in priniciple, with groups of any size.

1.3 The ModIsomExt info class

The package ModIsomExt defines an info class InfoModIsomExt . Currently, there are two info
levels implemented:

0 No additional information is printed.

1 MIPBinSplit (1.5.2) and MIPBinsByGT (2.1.1) print additional information during the respec-
tive computations.

If one sets also InfoModIsom to be 1, then MIPBinSplit (1.5.2) prints further additional informa-
tion.
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1.4 Nilpotent tables

We recall the format of nilpotent structure constants tables or just nilpotent tables as used in the Mod-
Isom package. Let A be a finite-dimensional nilpotent associative algebra over a field F . Furthermore
let (b1, . . . ,bd) be a weighted basis of A, i.e. a basis with associated weights (w1, . . . ,wd) such that
A j = 〈bi | wi ≥ j〉 and let ai, j,k be such that bib j = ∑

k
ai, j,kbk. Then a nilpotent table for A is a record

with the following entries.

dim
The dimension d of A.

fld
The field over which A is defined.

rnk
The rank of A, i.e. the dimension of A/A2.

wgs
The weights (w1, . . . ,wd).

wds
A list of length d with possible holes. If the i-th enty is bound, then it has the form [k, l] and
wi > 1, bi = bkbl with wk = 1 and wl = wi−1 holds.

tab
A partial structure constants table for A. If tab[i][ j][k] is bound, then it equals ai, j,k.

com
Optional. If bound, then it is a boolean indicating whether the algebra is assumed to be com-
mutative.

Note that the ModIsom package provides several functions for working with and manipulating nilpo-
tent tables; see below and the ModIsom documentation for more information.

1.4.1 MultByTable

. MultByTable(T, v, w) (operation)

Given a nilpotent table T and two coefficient vectors v and w representing elements of the algebra
described by T , the function returns a coefficient vector for the product of these elements, again
relative to the basis for the algebra given in T .

1.5 Quotients of augmentation ideals and splitting bins

The following functions provide the main functionality of the ModIsomExt package.
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1.5.1 TableOfRadQuotient

. TableOfRadQuotient(kG, n) (operation)

Given a modular group algebra kG the function computes the class-n quotient of the augmentation
ideal I(kG), i.e. I(kG)/I(kG)n+1. The output is a nilpotent table for this quotient. Note that in
addition to the standard entries of a nilpotent table it contains further entries for computational reasons.
This allows do determine the class-n quotient of the augmentation ideal without computing the full
augmentation ideal using NilpotentTableOfRad as provided by the ModIsom package.

The components dim , fld , rnk , tab , wgs , wds remain unchanged from the ModIsom package.
The additional components are commwords , powwords and pre . These new components contain
additional information on precisely which basis of I(kG)/I(kG)n+1 is used and what the result of
multiplying basis elements is. We explain how users can understand how the basis looks and how
they can multiply two elements in the algebra.

The dimension of I(kG)/I(kG)n+1 is recorded in T.dim . The basis of I(kG)/I(kG)n+1 is found
as in the theory of Jennings, cf. [MM20]. The elements of G chosen to provide the basis of subse-
quent quotients of dimension subgroups are recorded in T.pre.jen.pcgs . Let us call these elements
g1, . . . ,gm. Note that |G|= pm. If now l is an integer smaller than T.dim+1 , then the l-th elements of
the basis of I(kG)/I(kG)n+1 is (g1−1)e1 · . . .(gm−1)em where [e_1,...,e_m] = T.pre.exps[l] .
The weight of this element is recorded in T.wgs[l] and also T.pre.weights[l] .

We consider the group G= SmallGroup(37,19). The following example shows that I(kG)/I(kG)9

has dimension 135 and that the full augmentation ideal I(kG) has dimension 2186.
Example

gap> G := SmallGroup(3^7, 19);;
gap> kG := GroupRing(GF(3), G);;
gap> T := TableOfRadQuotient(kG, 8);;
gap> T.dim;
135

gap> T := TableOfRadQuotient(kG, 38);;
gap> T.dim;
2186

gap> T := TableOfRadQuotient(kG, 39);;
gap> T.dim;
2186

We next consider an example how the basis used can be recognized.
Example

gap> G := DihedralGroup(8);;
gap> kG := GroupRing(GF(2), G);;
gap> T := TableOfRadQuotient(kG, 4);;
gap> T.dim;
7
gap> pcgs := T.pre.jen.pcgs;
Pcgs([ f1, f2, f3 ])
gap> List(pcgs, Order);
[ 2, 4, 2 ]
gap> pcgs[3] in Center(G);
true
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gap> T.pre.exps{[1..7]};
[ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 1, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 1 ], [ 0, 1, 1 ],

[ 1, 1, 1 ]]

We conclude that I(kG)/I(kG)5 is 7-dimensional and if we denote by a a reflection and by b a non-
central rotation in G, then the basis used by T is: (a−1), (b−1), (a−1)(b−1), (b2−1), (a−1)(b2−
1), (b−1)(b2−1), (a−1)(b−1)(b2−1).
Say continuing the previous example we want to multiply (b−1)+ (a−1)(b−1)+ (a−1)(b2−1)
and (a−1)+(b−1)+(b2−1).

Example
gap> v := Z(2)^0*[0,1,1,0,1,0,0];
[ 0*Z(2), Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ]
gap> w := Z(2)^0*[1,1,0,1,0,0,0];
[ Z(2)^0, Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2), 0*Z(2) ]
gap> MultByTable(T,v,w);
[ 0*Z(2), 0*Z(2), Z(2)^0, 0*Z(2), Z(2)^0, 0*Z(2), 0*Z(2) ]

So the result is (a−1)(b−1)+(a−1)(b2−1).

1.5.2 MIPBinSplit

. MIPBinSplit(p, n, max, start, step, L) (operation)

Given a list L of small group library ids or a list of groups of order p^n this functions checks
isomorphism of the associated modular group algebras using canonical forms for the quotients of the
augmentation ideals I(kG). The parameter max is an integer or false that determines the maximal
quotients I(kG)/I(kG)max to be checked (if false is given as input, then the quotients are enlarged
until non-isomorphic quotients are found or eventually the full augmentation ideal will be checked).
The parameter start specifies which quotients I(kG)/I(kG)start are precomputed. The parameter
step determines in which steps the quotients are enlarged if necessary during the isomorphism check.

The output is a record containing three entries: bins contains all the groups, for which the non-
isomorphism of the associated modular group algebras could not be determined; splits contains all
the groups, for which the associated group algebras were determined to be non-isomorphic (and the
first non-isomorphic quotient); time contains the time used for the computation (in milliseconds).

The groups G = SmallGroup(37,19) and H = SmallGroup(37,43) are in the same bin after using
the group theoretical invariants. The following example shows I(kG)/I(kG)6 ∼= I(kH)/I(kH)6 and
I(kG)/I(kG)9 6∼= I(kH)/I(kH)9.

Example
gap> MIPBinSplit(3, 7, 5, 10, 5, [19,43]);
rec( bins := [ [ 19, 43 ] ], splits := [ ], time := 1056 )

gap> MIPBinSplit(3, 7, false, 10, 5, [19,43]);
rec( bins := [ ], splits := [ [ 8, [ 19, 43 ] ] ], time := 78920 )



Chapter 2

Group theoretical invariants

We call a property of a p-group G a group-theoretical invariant, if kG ∼= kH implies that H has the
same property. Here k denotes the field with p elements.

2.1 Computing Bins

The following function applies the group theoretical invariants included in [MM20] to split the given
groups into so-called bins. Groups that are in different bins do not share a certain group-theoretical
invariant. In particular, they do not provide a counterexample to the MIP. The function also checks if
a group lies in a class of groups for which the MIP is known based on the list in [MM20]. In this case
it does not appear in any bin.

2.1.1 MIPBinsByGT

. MIPBinsByGT(p, n[, L]) (operation)

Given a list L of small group library ids or a list of groups of order p^n the function uses group
theoretical invariants to split the groups into bins. If L is not given, then all groups of order p^n are
considered.

2.2 Some group-theoretical invariants

We document some of the major group-theoretical invariants for the MIP which are not easily available
as standard GAP -functions.

2.2.1 GroupInfo

. GroupInfo(G) (operation)

This is an auxiliary function used in other group-theoretical invariants. If IdGroup
is available in GAP for the order of G it returns IdGroup(G) . Otherwise it returns
[Size(G), AbelianInvariants(G)] . This function remains unchanged from ModIsom, but was
not documented before.

8



ModIsomExt 9

2.2.2 MIPConjugacyClassInfo

. MIPConjugacyClassInfo(G) (operation)

For a given p-group G this function returns a list L containing known group-theoretical invari-
ants associated to the conjugacy classes of G . The first entry of L is the so-called Roggenkamp
parameter ∑gG logp(|CG(g)/Φ(CG(g))|) where the sum runs over conjugacy classes of G . The next
entries contain the number of conjugacy classe which are p`-th powers, for 0 ≤ ` ≤ logp(exp(G))
(Kuelshammer). Note that for `= 0 this is just the number of conjugacy classes in G . Finally, the fol-
lowing entries contain the number of conjugacy classes of p`-th powers which are not central and have
the same order as a class which powers to them where 0≤ `≤ logp(exp(G))−1 (Parmenter-Polcino
Milies).

2.2.3 SubgroupsInfo

. SubgroupsInfo(G) (operation)

For a given p-group G this function returns a list L containing at the i -th position the number of
conjugacy classes of maximal elementary-abelian subgroups of order pi in G (Quillen). This function
remains unchanged from ModIsom, but was not documented before.

2.2.4 MIPJenningsInfo

. MIPJenningsInfo(G) (operation)

For a given p -group G this function returns a list L containing information on quotients of the
Jennings-Zassenhaus series Di(G) of G . Starting with i=1 for increasing i it contatins the GroupInfo
for Di(G)/Di+1(G), Di(G)/Di+2(G), and Di(G)/D2i+1(G) when these are defined. The last entry
describes G/D3(G) if p=2 and G/D4(G) if p>2 . If D3(G) = 1 or D4(G) = 1, respectively, and
IdGroup is a known attribute of G , it is IdGroup(G) . Otherwise it contains the GroupInfo of
G/D3(G) = 1 or G/D4(G) = 1 respectively.

2.2.5 MIPSandlingInfo

. MIPSandlingInfo(G) (operation)

For a given p -group G this function returns a list L containing information on the Sandling quotient
G/γ2(G)pγ3(G). The first entry describes Q=G/γ2(G)pγ3(G) in the following way: If γ2(G)pγ3(G)=
1 and IdGroup is a known attribute of G , it is IdGroup(G) . Otherwise it contains the GroupInfo of
G/γ2(G)pγ3(G) (Sandling). Moreover, if G is generated by at most two elements and the length of the
Jennings-Zasenhaus series of G is at least four, it contains a second entry describing G/γ2(G)pγ4(G)
in a similar way (Baginski/Margolis-Moede).
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Jennings bound

3.1 Jennings bound

For a pair of groups G and H the Jennings bound is defined as the maximal integer s such that
G/Ds(G) ∼= H/Ds(H), where Di is the Jennings-Zassenhaus series (see [MM20]). If s is the Jen-
nings bound for G and H, then it follows that I(kG)/I(kG)s ∼= I(kH)/I(kH)s. Thus s is a minimum
for the level until which MIPBinSplit needs to run to be able to split the groups.

3.1.1 JenningsBound

. JenningsBound(p, n, L) (operation)

Given a list L of small group library ids or a list of groups of order p^n the function computes an
integer b such that the quotients of the associated augmentation ideals are guaranteed to be isomorphic
up to class b−1.

More precisely b is the biggest integer such that for any G,H ∈ L one has G/Db(G)∼= H/Db(H).

3.1.2 JenningsBoundPairwise

. JenningsBoundPairwise(p, n, L) (operation)

Given a list L of small group library ids or a list of groups of order p^n the function computes for
all pairs (G,H) of groups in the list an integer b such that the quotients of the associated augmentation
ideals are guaranteed to be isomorphic up to class b−1.

More precisely the return is a list of triples. The first two entries of each triple are two groups G
and H, or their ids if they are available, and the last entry contains JenningsBound(p,n,[G,H]) .

3.1.3 JenningsBoundConjecture

. JenningsBoundConjecture(p, n, L) (operation)

Given a list L in the format returned by MIPBinSplit for some groups of order pn this function
checks if the groups violate the bound conjectured in Question 2.7 [MM20] on the maximal quotients
of the corresponding augmentation ideals which need to be checked to decide MIP.
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For elements of MIPResults(p,n) which are solved by theoretical results, or which remain open,
it returns fail.

3.1.4 JenningsBoundConjectureIsStrict

. JenningsBoundConjectureIsStrict(p, n, L) (operation)

Given a list L in the format returned by MIPBinSplit for some groups of order pn this function
checks if the groups attain the bound conjectured in Question 2.7 [MM20] on the maximal quotients
of the corresponding augmentation ideals which need to be checked to decide MIP. This function
currently only works if L contains the information for a pair of groups.



Chapter 4

Computational results

The ModIsomExt package contains precomputed bins and results for certain orders of groups. These
can be accessed using the following functions.

4.1 Bins

4.1.1 MIPBins

. MIPBins(p, n) (operation)

Given a prime p and a positive integer n the function returns the bins resulting from using group
theoretical invariants. Precomputed bins are only available for orders 26, 27, 28, 29, 36, 37 and 56.
Note that in the case 29 only 2- and 3-generated groups of this order are considered.

4.2 Results

4.2.1 MIPResults

. MIPResults(p, n) (operation)

Given a prime p and a positive integer n the function returns the results of verifying MIP. This is
only available for orders 26, 27, 28, 29, 36, 37 and 56. Note that in the case 29 only 2- and 3-generated
groups of this order are considered.
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