
Towards Enabling Secure Web-Based Cloud Services using
Client-Side Encryption

Martin Johns

TU Braunschweig

m.johns@tu-bs.de

Alexandra Dirksen

TU Braunschweig

a.dirksen@tu-bs.de

ABSTRACT
The recent years have brought an in�ux of privacy conscious ap-

plications, that enable strong security guarantees for end-users

via end-to-end or client-side encryption. Unfortunately, this ap-

plication paradigm is not easily transferable to web-based cloud

applications. The reason for this lies within adversary’s enhanced

control over client-side computing through application provided

JavaScript. In this paper, we propose CryptoMembranes – a set

of native client-side components that allow the development of

web applications which provide a robust isolation layer between

the client-side encrypted user data and the potentially untrusted

JavaScript, while maintaining full interoperability with current

client-side development practices. In addition, to enable a realistic

transition phase, we show how CryptoMembranes can be real-

ized for currently existing web browsers via a standard browser

extension.

1 INTRODUCTION
1.1 Motivation
At the latest since the disclosures of Edward Snowden, messen-

ger applications o�ering end-to-end encryption such as Signal [5]

or Threema [6] are gaining in popularity. Consequently, provider

of other Cloud Software or Social Networks are coming under

increasing pressure to encrypt the data of their user as well. In

response to this trend more and more large companies provide

end-to-end encrypted services to their users [7, 8, 11, 25, 39]. In

case of cloud-based applications, the adoption of the client-side

encryption paradigm is attractive to strengthen the cloud’s privacy

pro�le [28].

Nowadays many cloud-based applications utilize web technolo-

gies, i.e., HTML and JavaScript, to implement their user interfaces

so that they can be accessed directly from the browser. Unfortu-

nately, the underlying security requirements of applications that

leverage client-side encryption cannot be adapted to web-based

applications in general and SaaS scenarios in particular [18]. The

reason for this lies in the core of the web application paradigm:Web

frontends allow the cloud provider, and thus the potential adversary,

to execute JavaScript code on the client-side within the user’s web

browser, where the con�dential data resides unencrypted. This in

turn enables an active attacker to access and leak this data with-

out the user’s knowledge and consent, rendering the application

inherently untrustworthy.

First approaches to answer the growing demand for client-side

privacy enforcement materialized in the form of browser extensions.

Those add a client-side encryption layer to existing web applica-

tions, often without the consent or cooperation of the operators of

the targeted applications [1, 2, 4].

However, as shown in [17] ham�sted solutions to extend exist-

ing web applications with encryption mechanisms often lead to a

cat-and-mouse game between the extensions and the application

developer, when it comes to e.g. automatically identifying the input

�elds that are intended for sensible user data.

In contrast, the motivation of this work is to provide website

developers native tools, i.e., standardized DOM elements, which

integrate out-of-the box encryption into the browser. On one hand

developer can create web applications which allow their users to

maintain his/her privacy from scratchwhile preserving the usability

due to seamless client-side compatibility. On the other hand, the

user does not have to be confronted with the decision whether to

put the use of an application above her privacy.

1.2 Overview
More speci�cally, we propose a new methodology to build web

application with client-side encryption from the ground up using

enhanced web browser capabilities. To substantiate the underlying

idea, we �rst instantiate this approach via direct integration into

the core of the web browser. Furthermore, we show how browser

extensions could be leveraged to realize the concept using today’s

web browsers:

Secure Building Blocks for Client-side Encrypted Cloud Applica-
tions. In this paper, we propose CryptoMembranes, a set of client-

side components for SaaS cloud applications. CryptoMembranes

leverage client-side encryption for user con�dentiality goals and

are secure against active JavaScript attackers. The core of our work

is a new type of DOM/HTML element, the CMembraneElements,

which provide seamless functionality in the web browser with the

standard DOM API but provide strong protection of con�dential

data. A CMembraneElement maintains two representations of

the con�dential data simultaneously: An encrypted instance that is

available for the (untrusted) client-side code to enable rich appli-

cation functionality and an unencrypted instance for the user to

consume and interact with. The two value instances are linked

– if one instance is changed through active code or user inter-

action, the other is updated accordingly through instantaneous

and transparent en/decryption operations. CMembraneElements

closely mirror the form and functionality of the corresponding

DOM elements, which enable rapid and easy adaption of existing

SaaS cloud application code towards the secure paradigm.

Providing Isolated Crypto-elements for Legacy Browsers. The cur-
rent generation of web browsers do not o�er native elements to

enable secure SaaS cloud applications that utilize client-side en-

cryption. In this paper, we introduce the idea for web browser

extension, that only uses technologies readily available today, to

provide strong isolation between the con�dential user data and



the untrusted client-side code of the cloud application, without

impacting the client-side functionality of the application. Using a

sophisticated combination of on-the-�y rewriting of DOM content,

strong compartmentalization that leverages the Web’s Same-Origin

Policy, and modern cross-origin communication primitives, a seam-

less integration of the newly introduced DOM containers into the

cloud application code is provided.

2 PROBLEM STATEMENT
2.1 Principals and Security Objectives
In the context of this paper we consider three main principals: The

user, the database operator, and the cloud application operator. These
principals have the following relations:

• The user uses the cloud services of the cloud application
operator. For this purpose he utilizes standard web browser

technology to access the application.

• The cloud application operator provides, operates and main-

tains the SaaS (Software as a Service) cloud application, of-

fered to the user via web-based technologies. He uses the

database operator to store the user’s data.
• The database operator o�ers data storage services to the

cloud provider and user in a IaaS (Infrastructure as a Service)

fashion.

In general, the three principals can be regarded as mutually

distrusting. However in the context of this document, we mainly

consider the user’s distrust in relation to the other two actors. Thus,

we de�ne the primary security objective of the user as follows:

Security Objective: The user want to keep his personal data pri-

vate from the other parties, while still using their SaaS and IaaS

services.

2.2 Partial Solution: Client-side Data
Encryption

In [27] Popa et. al employ encrypted databases to partially address

the outlined security objective: In this application model, the user

encrypts all his data locally before sending it to the application

provider/database. The application and database operate purely on

encrypted values leveraging technologies such as partially/fully

homomorphic encryption [19], order-preserving encryption [13]

or searchable encryption [33].

In this model, the encryption key never leaves the user’s control

and the data remains fully encrypted while being processed by the

application provider and database operator. Thus, the privacy of

the user’s data is robustly enforced for all computation locations

out of the user’s own infrastructure.

2.3 Problem: Client-side Leakage of Private
Data

While using client-side encryption works well for certain applica-

tions, it is not suitable for the outlined cloud scenario. In web-based

cloud applications utilizing encrypted databases, the user uses his

web browser to interact with the application. Within the browser,

the user’s data is entered and displayed in plaintext.

The encryption/decryption in such scenarios is in general con-

ducted by a dedicated client-side component, such as a web proxy or

browser extension, that decrypts incoming data, before it is passed

to the browser’s rendering engine and encrypts it, before the HTTP

tra�c leaves the user’s infrastructure [18].

The security culprit here is, that the UI code (HTML/JavaScript)

is provided on runtime by the cloud application operator. The user’s
data exists in unencrypted form within the browser, as otherwise

the user would be unable to enter/read the data. Thus, all active

JavaScript code is also capable of reading the data. Hence, a mali-

cious or compromised cloud application operator could modify the

JavaScript code that is sent to the client such that it can read the

data after it has been decrypted or right after the user entered it

before it is encrypted. Unencrypted data subsequently can be leaked

to the malicious principal in clear text via various HTTP means,

such as XMLHttpRequests [36] or WebSockets [23].

What makes matters worse is the fact that malicious JavaScript

is not restricted to accessing unencrypted data that was actively

queried by the user during the application usage session. As the

JavaScript code runs within the authorized web session of the user,

it can covertly create arbitrary, additional data queries to the appli-

cation’s backend, well hidden in invisible iframes. The decryption

proxy cannot di�erentiate between these rogue HTTP requests

and legitimate requests, that were initiated by the user and thus

will readily decrypt all incoming data. Therefore, the attacker is

able to obtain all data from the server, that was stored under the

user’s account and was presumed to be protected by the client-side

encryption process.

3 RELATEDWORK
With the initial publication of the CryptDB paper [27], building

practical applications over encrypted databases have become an

area of constant attention. Several variants of this application sce-

nario have been subsequently been published. Furthermore, papers

have proposed to use proxies for client-side encryption of web

data, in many cases without active cooperation of the server-side

infrastructure [16, 18, 31]. However, none of these works considers

the unique client-side leakage attacks in SaaS, which are the focal

point of this paper.

Several attacks of client-side information leakage on web ap-

plications have been discussed in the past. For one, it has been

shown that client-side timing of HTTP responses can disclose

cross-origin, sensitive information [21, 35]. This requires that the

communication between the trusted and untrusted realms happen

within the browser and do not rely on HTTP or other network

tra�c. Furthermore, it has been shown, that the information-�ow

restricting directives of the communication service provider can

be subverted [15, 34]. These attacks require the attacker to execute

JavaScript in the same DOM as the sensitive values reside, a circum-

stance robustly prevented if the Same-origin Policy is respected,

which is one of the key elements of our work.

The conceptional closest work that addresses client-side encryp-

tion is ShadowCrypt, proposed by He et. al [22]. This work takes

advantage of Shadow DOM, a browser primitive that was stan-

dardized by W3C [20] and is part of Web Components [38]. These

elements can be leveraged to create an encapsulated DOM subtree,



which is then attached to an existing DOM tree. This helps devel-

opers to avoid website errors due to con�icting CSS or JavaScript

selectors.

Even if projects like ShadowCrypt try to leverage Shadow DOM

in order to isolate user data, it was never meant to be used as a

security feature. This procedure is even strongly disadvised by

Shadow DOM’s inventor Hayato Ito [24]. One of the reasons is

that the Shadow DOM, which contains the user’s sensitive data,

is appended to a regular untrusted DOM element, named Shadow

Host. Consequentially, the isolated Shadow DOM is hosted in the

same origin as the untrusted DOM above and so is the user’s data.

As long as the Shadow Host is untrusted, the data remains vul-

nerable for e.g. XSS attacks or SQL injection. This limitation was

even pointed out by the authors of ShadowCrypt in [22, Sec. 2,1].

In [17] Freyberger et. al investigates the limitations of securing

input in internet browsers, with a focus on implementations using

ShadowCrypt. Even after the introduction of the closed tag for

Shadow DOM in 2017 [14] the authors still warn about relying on

Shadow DOM for security isolation, since there is no way to stop

an attacker from hijacking the attachment of a Shadow DOM.

A more promising approach to tackle this problem is the use

of the DOM element iframe [9], which strictly enforces the Same-

origin Policy if the sandboxed tag is used. Those elements can be

considered as a separate HTML page speci�cally designed to isolate

content from access outside of the same origin, be it an untrusted

DOM element or JavaScript.

One project that utilized iframes for the isolation of sensible

user data was Priv.ly [3]. With the help of a browser extension this

project identi�ed input �elds on websites which are intended to

contain sensible user data. Instead of pasting the user’s plaintext

into the untrusted DOM, the extension replaces it with URLs. They

point to a server where the user’s encrypted content is located.

This data is decrypted and placed in iframes which in turn are

inserted into the DOM. This project was shut down due to multiple

reasons, which the founders list on their website [3]. One of the

reasons coincides with the main incentive of our work – subsequent

encryption of data on existing applications inevitably leads to a

cat and mouse game between the data protectors and the company

behind the target application. As already shown in [17] it is nearly

impractical to automatically �nd each input �eld on a website worth

protecting. Either because any change to the layout may result in

the �elds no longer being recognized. Or because the website is not

even using prede�ned input elements for the user’s input, as it is

the case with e.g. Google Docs.

4 CRYPTOMEMBRANES: SECURE CLIENT-SIDE
ENCRYPTED CLOUD APPLICATIONS

As mentioned in the introduction of this paper, we aim to overcome

the current problem of web applications using client-side encryp-

tion, i.e., their weakness to active JavaScript data leakage attacks. To

this purpose, we introduce CryptoMembranes – a secure solution

to prevent the leakage of decrypted values by malicious JavaScript

on the client-side.

Figure 1: Overview of the system architecture

4.1 Core Concept
The core concept of CryptoMembranes is based on in-place us-
age of CMembraneElements instead of regular DOM elements.
For each regular DOM element that can carry data, such as nu-

meric values or text, a corresponding CMembraneElement exists,

e.g., DIV elements are matched with CryptoDIV elements. A given

CMembraneElement exposes exactly the same interface and be-

havior as the corresponding regular DOM element.

4.2 Architecture
The coarse architecture of the presented systemsmirrors the general

set-up of a cloud application utilizing an encrypted database (see

Sec. 2.2 and 2.3):

(1) Encrypted database backend: Stores the user’s data. The data

resides in encrypted form, due to client-side encryption.

(2) Cloud application: The cloud application queries the data-

base to obtain the user’s data and compiles HTML/JavaScrip-

t/JSON content containing the encrypted user data.

(3) Web browser: The web browser renders the cloud applica-

tion’s HTML/JavaScript to provide the user with the appli-

cation’s user interface

(4) Client-side de/encryption mechanism and key store: A dedi-

cated unit resides in the user’s browser, which transparently

decrypts the incoming data and encrypts values in outgoing

HTTP tra�c. It provides secure storage and management of

the user’s encryption keys.

(5) To protect the decrypted values from malicious JavaScript,

the data is kept in CMembraneElements within the browser.

Please refer to Figure 1 for a graphical overview of the system.

4.3 CMembraneElements

The core contribution of CMembraneElements is the fact that a

CMembraneElement provides both decrypted (for the user) and

encrypted (for the application’s JavaScript) access to the contained

values:



Figure 2: Schematic view of a CMembraneElement

De�nition: A CMembraneElement is a dedicated DOM element

with the following characteristics:

• It mirrors in form, API and functionality a corresponding,

regular DOM element (e.g., a DIV element).

• It carries a least one value, such as a numeral, a string or a

text node.

• It maintains the contained value in two forms: Unencrypted

and encrypted.

• The unencrypted value is presented to the user via the

browser UI.

• The encrypted value is available to the enclosing website’s

JavaScript.

• If one of the two representations is changed via running

JavaScript code or through user interaction, the correspond-

ing representation changes accordingly. This means, the

client-side de/encryption mechanism transparently trans-

forms the changed values, i.e., updates the encrypted or

unencrypted version via the corresponding cryptographic

operation.

• The enclosing web page’s JavaScript has no access to the

unencrypted value.

Please refer to Figure 2 for a graphical representation of the

CMembraneElement concept.

4.4 CMembraneElement Syntax:
A CMembraneElement adheres to the following syntactic conven-

tions:

• Name: The name of the corresponding HTML element is of

the form Crypto followed by the name of the mirrored DOM

element, e.g., CryptoDIV
• KeyID attribute: A CMembraneElement carries an optional

HTML attribute named CMkeyID, which speci�es the locally

stored cryptographic key that should be used for the crypto-

graphic operations.

• Algorithm attribute: A CMembraneElement carries an sec-

ond optional HTML attribute named CMALgID, which spec-

i�es the cryptographic algorithm that should be used for

the cryptographic operations, e.g., "OrderPreserving" for a

suitable order preserving algorithm.

If one or both of the attributes are missing, the client-side mech-

anism chooses the default key and/or algorithm to process the data.

For simple applications, in general a single key per algorithm-class

is su�cient.

4.5 CMembraneElement Types
For functional reasons two distinct types of CMembraneElements

exist: Display and Input CMembraneElements.

4.5.1 Elements for data output. Display CMembraneElementshave

the purpose to present con�dential data to the user. While the ac-

tual values are kept in encrypted form in the database, and thus are

out of reach for potential attackers, they are shown to the user in

clear text, when displayed by the browser.

For instance, Listing 1 shows the source code for a CryptoDIV
CMembraneElement. The tag was included in the web page’s

source code by the cloud application. The actual encrypted data

between the opening and closing tag was retrieved from the data-

base. Upon rendering the web page, the browser’s rendering engine

passed the encountered value to the decryption mechanism on

client-side, with the information that the corresponding crypto

key has the id "123" and that the "Order Preserving Encryption"

algorithm should be applied. Both these information was obtained

from the element’s attributes.

The decryption mechanism decrypts the value on the client-side

and causes the rendering engine to create a graphical representation

of the decrypted value, that is inserted in the displayed DOM at

the position where the CryptoDIV would appear. Any JavaScript

running in the page would only see the encrypted value, as the

decrypted version is strongly contained within the CMembrane-

Element’s container.

The usage of HTML within a Display CMembraneElements is

permitted. However, to avoid accidental or targeted data leakage,

JavaScript execution and referencing of external HTTP content is

prevented.

1 <CryptoDIV CMKeyID="123" CMAlgID="OrderPreserving">
2 AB34CEA23...
3 </CryptoDIV>

.

Listing 1: Example for a CryptoDIV element, carrying a value
that was encrypted with the key 123 and the algorithm "Or-
derPreserving".

If JavaScript code in the page would alter the content of the

element, e.g., through direct manipulation, this operation �rst only

alters the encrypted representation of the value. Subsequently, the

client-side cryptomechanism checks, if the new value adheres to the

expected syntactic conventions (e.g., charset or size) of the element’s



crypto algorithm. If this is the case, it attempts to decrypt the new

value and display the result in the isolated rendering segment. This

functionality allows the update of the CryptoDIV with new values,

which have been obtained on run-time or the transfer of encrypted

content within the DOM, without any loss of con�dentiality.

4.5.2 Elements for date entry. Input CMembraneElements are

DOM elements that occur in HTML forms to interactively query

data from the user. Any HTML element, such as INPUT or TEXTAREA,
has a matching CMembraneElement.

Listing 2 shows a CryptoINPUT that allows the user to enter text
in string form. After the user has �nished his input, the client-side

crypto mechanism uses the referenced key (in the depicted case the

key with the id "345") to encrypt the value. The resulting encrypted

value is available via the element’s DOM API, i.e., through the

element’s value property. Furthermore, when the enclosing HTML

form is submitted, the corresponding HTTP POST request also

carries the encrypted value. The cleartext value never leaves the

client-side CMembraneElementcontainer.

1 <CryptoINPUT Type="text" Name="confinput" CMKeyID="345"

CMAlgID="Deterministic">↩→

Listing 2: Example for a CryptoINPUT element.

4.6 Secure data entry for Input
CMembraneElements

To combat social engineering attacks, in which the user might be

tricked into entering con�dential information into

non-CMembraneElement inputs, the browser clearly indicates

that the current element, which receives the input is indeed a se-

cure CMembraneElement. How this is realized, depends on the

system platform on which the browser is executed:

For standard web browsers running on desktop operating sys-

tems the browser creates an input �eld, that cannot be imitated

with standard HTML/CSS. The most straight-forward method to

do so, is to implement the actual input �eld outside of the web page

and within the general browser UI, e.g., within an expanding entry

�eld that originates out of the browser’s address bar. This procedure

may be similar to the address bar’s lock-icon which indicates that

the current website serves a valid certi�cate.

For mobile web browsers running on mobile platforms, such as

Android or iOS, other non-spoofable UI strategies are preferable, as

the browser UI is comparatively small in these cases. Such strategies

could include companion apps, that take the task of data entry, or

speci�c clearly marked secure keyboards, that cannot be invoked

by untrusted, non-CMembraneElement code.

4.7 Client-side programming using
CMembraneElements

As the CMembraneElements external API and behavior is de-

signed to be indistinguishable form the API and behavior of the

mirrored elements, the corresponding JavaScript coding does not

need to be altered. This is especially relevant in cases in which ex-

isting applications are adapted to work with client-side encryption.

Display Elements
HTML CMembrane Remark
<H1> <CryptoH1> For <H2> - <H6> likewise

<DIV> <CryptoDIV>
<LI> <CryptoLI> Requires closing <\CryptoLI>
<P> <CryptoP> Requires closing <\CryptoP>
<SPAN> <CryptoSPAN>
<A> <CryptoA> Applies crypto to the link text, not the URL

<TH> <CryptoTH>
<TD> <CryptoTD>

Input Elements
HTML CMembrane Remark
<INPUT> <CryptoINPUT>
<OUTPUT> <CryptoOUTPUT>
<TEXTAREA> <CryptoTEXTAREA>

Table 1: Overview of CMembraneElements.

As long as the cryptographic keys and algorithms match, data

can be freely moved in between CMembraneElements. Take for

example Listing 3: Both CMembraneElements share the same

key and algorithm. As soon as the user has entered text into the

CryptoINPUT CM2, the onchange eventhandler (line 4) calls the

JavaScript function moveData (line 7). This function, running in the

untrusted part of the DOM has no access to the cleartext that has

been entered by the user. Instead the reading operation in line 10

cause the encryption mechanism to encrypt the entered value with

the CMembraneElement’s key and algorithm and pass the result

of this operation to the cValue variable. The operation in line 11

conducts the opposite process – the encrypted value is passed to

the CryptoDIV element, which causes the crypto mechanism to

decrypt the received value and update the unencrypted represen-

tation within the element’s secure boundaries. The unencrypted

value is subsequently shown to the user within the displayed DOM.

For the JavaScript and the user, the cryptographic operations are

completely transparent and invisible. Exchanging the CMembrane-

Elements in the example with regular DIV and Input HTML ele-

ments would result in an application that would look and behave

fully identical.

1 <CryptoDIV ID="CM1" CMKeyID="911" CMAlgID="Deterministic">
2 </CryptoDIV>
3

4 <CryptoINPUT ID="CM2" Type="text" name="conf" CMKeyID="911"

CMAlgID="Deterministic" onchange="moveData()">↩→

5

6 <script>
7 function moveData(){
8 var cm1 = document.getElementById("CM1");
9 var cm2 = document.getElementById("CM2");
10 var cValue = cm2.value // cValue is encrypted
11 cm1.innerText = cValue;
12 }
13 </script>

.

Listing 3: Client-side programming with CMembrane-

Elements.



4.8 CMembraneElement Element Overview
As speci�ed above, the CMembraneElement-types span two dis-

tinct classes, display and input CMembraneElements. The class of

display CMembraneElements contains all DOM elements, that can

carry text child-nodes, most notably CMembraneElementsfor

the div, span and td DOM elements. The contained text of these

elements is subject to the transparent crypto operations.

The class of input CMembraneElements encompasses all DOM

elements, that can be used to query free-form input from the user in

the context of HTML forms, most notably CMembraneElements

for the input and textarea DOM elements. We leave the design

of suitable CMembraneElements for modal input elements, such

as option for future work.

Please refer to Table 1 for an overview of all covered CMembrane-

Elements.

5 EXTENSIONMEMBRANES: PROVIDING
ISOLATED CRYPTO-ELEMENTS FOR
LEGACY BROWSERS

We envision CryptoMembranes to be a fully supported approach

for future browser generations. A native built-in implementation

of CMembraneElements in web browsers is straight forward, as

the browser engine runs in a higher security context as a web-

site’s JavaScript. Thus, the browser engine can conduct the code

compartmentalization and content isolation of the sensitive data.

In this section, we show how CMembraneElements can be

realized for the existing browser generation purely by using existing

web standards and a web browser extension.

5.1 ExtensionMembranes: Overview
We introduce ExtensionMembranes, a full realization of the

CryptoMembranes-concept using only already existing, standard-

ized HTML elements and JavaScript APIs, leveraging standard

browser extension technology.

ExtensionMembranes browser extension: The system is realized

in the form of a standard web browser extension, a technology that

is supported by all major web browsers. Extension code runs on

the client-side with higher privileges and robustly isolated from

untrusted, web-retrieved JavaScript code. Thus it can securely en-

force the system’s security objectives. The extension provides the

following functionality:

Secure key storage The extension securely persists the user’s

cryptographic material, such as encryption keys, and o�ers

tools for key management.

Page rewriting The extension processes all incoming HTTP

responses and inserts secure element compartments into the

DOM for all sensitive values (more on this process below).

Secure connection between untrusted JavaScript and sensi-

tive data: The extension introduces technical measures and

communication primitives that realize the CryptoMembranes-

like linking of values between the trusted and the untrusted

realms.

For the storage and processing of the sensitive data, the extension

utilizes ExtensionMembraneElements:

ExtensionMembraneElements: To encapsulate the con�dential

data and provide the transparent interactionwith untrusted JavaScript,

we introduce ExtensionMembraneElements. In essence, a Exten-

sionMembraneElement consists of the following components:

• Container element: A DOM element that encapsulates the

ExtensionMembraneElement content and logic. In most

cases realized with DIV or SPAN elements.

• Isolated compartment: An isolated subdocument hosted on a

unique, non-web origin, that contains the sensitive data and

the decryption logic. In the proposed implementation, this

compartment is realized using iframe elements.

• Connecting JavaScript logic: Essential JavaScript APIs and
properties of the container element are rede�ned to trigger

the secure handling of the sensitive value and the connection

between the untrusted environment to the trusted isolated

origin within the iframe.

The details of these components will be explained in dedicated

sections of this document later.

Page loading process: On the server-side web content that is

designed to leverage ExtensionMembraneElements uses specif-

ically marked HTML elements that are replaced by the browser

extension with ExtensionMembraneElements during page load.

While the speci�c method of marking in these custom elements

is �exible and arbitrary (as long as the marking is unambiguous),

for the remainder of this document, we assume that the syntactic

conventions of CMembraneElements, as introduced in Section 4.4,

are used.

On a coarse level, for each incoming HTML document, the

browser extension conducts the following steps:

(1) Replace CMembraneElements with container DOM ele-

ments

(2) Insert isolated iframes into the containers

(3) Decrypt the initial values and pass the resulting data to the

iframe DOM

(4) Alter the APIs and properties of the container element, such

that they transparently update the iframe content.

Please refer to Figure 3 for a system �ow diagram. The precise

implementation of these steps is provided in the following sections.

5.2 Initial rewriting of custom
ExtensionMembraneElements

As the proposed custom CMembraneElements are unknown to

the browser, any CMembraneElement element contained in a

web page’s HTML has to be replaced with existing DOM elements.

The preferable method for this is on-the-�y rewriting the incom-

ing HTML source code before it is passed to the rendering en-

gine. Some browsers, such as Firefox, allow direct manipulation of

the HTTP tra�c conducted by the browser extension. For other

browsers, such as Google Chrome, instead the extension has to

leverage ServiceWorkers [30] for this task. In either case, the exten-

sion establishes an HTTP interception mechanism that modi�es the

incoming HTML on the network layer, similar to an intercepting

man-in-the-middle proxy.

The rewriting is done as follows: each encountered

display CMembraneElement, e.g., CryptoDIV, is replaced with the



Figure 3: Processing of incoming HTTP responses

corresponding DOM element, e.g., DIV, with an additional attribute

that signi�es to the subsequent processes, which CMembrane-

Element the element represents (see Listing 4). Input CMembrane-

Elements are initially replaced with SPAN elements, which are

set via CSS to have exactly the same dimensions as the replaced

element. Please refer to Listing 4 for an example.

Alternatively, for browsers that do not support either on-the-�y

rewriting method, the custom HTML elements remain in the page

until the rendering process has terminated. As the custom HTML

elements are unknown to the browser, they are ignored during the

rendering process, but can still be located via JavaScript. After the

initial rendering has terminated, the custom elements are replaced

in in place using JavaScript, as described above.

5.3 Subsequent rewriting of custom
ExtensionMembraneElements on runtime

Modern web applications frequently rely on client-side creation of

HTML markup, using JavaScript libraries, such as JQuery [12] or

AngularJS [10]. Hence, not all ExtensionMembraneElements can

1 The following CMembraneElement:
2

3 <CryptoDIV ID="CM1" CMKeyID="911" CMAlgID="Deterministic">
4 AB34CEA23...
5 </CryptoDIV>
6

7 will be rewritten into:
8

9 <DIV rel-crypto="cryptodiv" ID="CM1" CMKeyID="911"

CMAlgID="Deterministic">↩→

10 AB34CEA23...
11 </DIV>

.

Listing 4: Rewriting of CMembraneElements into Extension-

MembraneElements.

be processed on-the-�y. To accommodate this development method-

ology, the extension augments all DOM-APIs that are capable of

adding further HTML content to the document,

i.e, document.write and all variants of HTMLElement.innerHTML,
similar to the methodology presented by Musch et al. [26]. The aug-

mented APIs intercept the HTML-strings before they are passed to

the browser’s HTML parser. This way, all additional DOM content

can be processed following the method discussed in Sec. 5.2.

5.4 Insertion of isolated compartments
The inserted DOM elements (in most cases DIV, SPAN or TD ele-

ments) serve as containers for the secure value compartments. To

realize the isolated compartment CryptoMembranes leverages

iframe elements. For each of the container elements, the browser

extension inserts an iframe as a direct child node. The origin of

the web content displayed in the iframe is unique for the browser

session, unreachable for the untrusted web content and owned by

the browser extension. Please refer to Listing 6, lines 5 - 17, for an

example in which a DIV ExtensionMembraneElementis created.

Thus, thanks to the browser’s same-origin policy [29], the un-

trusted JavaScript code cannot reach into the iframe to read its

content. The browser extension sets the CSS properties within the

iframe to match the properties that would be applied to the unal-

tered, replaced element, causing the content displayed in the iframe

to seamlessly match its surroundings.

5.5 Initial decryption of existing data
Next, for each processed CMembraneElement, the browser exten-

sion checks, if the element contained encrypted values. They must

be clearly identi�able as encrypted and appear either as childnodes

(in case of display elements) or value attributes (in case of input ele-

ments). If such content is found, it is removed from the visible DOM

and placed in a custom property of the container DOM element.

Furthermore, the browser extension retrieves the corresponding

crypto-key and decrypts the value within the secure realm of the

privileged extension code. The resulting unencrypted value is set

as the content of the securely isolated iframe, such that the browser

can display it to the user.



5.6 Rendering of the sensitive content
The browser extension retrieves the applicable CSS styles for the

replaced DOM element and propagates them into the con�nements

of the iframe, resulting in a seamless rendering of the element.

Display ExtensionMembraneElements are permitted to display

HTML markup to structure the data. However, to avoid active data

leakage attacks, such as stored XSS, the following measures are

taken:

• No HTTP content from outside the origin of the browser ex-

tension can be loaded into the iframe and no HTTP/network

requests are allowed to be created from within the iframe.

• No JavaScript execution is allowed in the iframe, besides the

privileged value-passing JavaScript owned by the browser

extension.

To robustly enforce these security properties, the compartment

iframes are out�tted with a strict Content Security Policy (CSP) [37].

The applied CSP disallows all network communication through

an empty whitelist for all CSP directives. Furthermore, all inline
scripts are forbidden, along with all scripts, that do not originate

directly from the browser extension. Furthermore, dynamic creation

of script code is prevented. Please refer to Listing 5 for the precise

CSP.

1 Content-Security-Policy: default-src 'self'

.

Listing 5: The strict CSP applied to all ExtensionMembra-

neElements. Only ’self’, i.e., the unique origin of the browser
extension is whitelisted.

5.7 Instantiation of JavaScript handlers for
value-passing

Finally, to enable JavaScript-based interaction with the elements

(see Listing 3), the extension rewrites the public properties and

APIs of the container element, to cause the browser extension to

conduct the corresponding de/encryption operations on read, write

and interactive update operations, that target the container element.

This is done by replacing all APIs and properties that target values

within the element:

Read operations All APIs/properties that grant read access to

the contained value are altered to return the encrypted value

which is held in a speci�c custom property of the element.

Write operations All APIs/properties that grant write access

to the contained value are altered as follows: First, the passed

new value is written into the speci�c custom property of the

element. Subsequently, the new value is passed, using the

postMessage API [32] into the iframe for cryptographic

processing and presentation to the user.

Update operations Accordingly to thewrite operations, a mes-

sage handler is instantiated, that receives postMessages
from within the iframe. Such messages are created by the

iframe whenever user interaction changes the cleartext

version of the value in the iframe, e.g., in case the user

enters information into a INPUT �eld. In this process, the

extension retrieves the entered/changed cleartext value, ap-

plies the corresponding encryption and sends the cipher-

text via postMessage to the encapsulating ExtensionMem-

braneElement. The ExtensionMembraneElement’s mes-

sage handler retrieves the new encrypted value from the

postMessage and updates the speci�c custom property of

the element.

For instance, in the example of Listing 3, the innerText property
of the element cm1 (line 11), would have been rewritten to do the fol-
lowing: First, the internal store of the elements would be updated to

the value passed via the property call. Next, a

postMessage call is created to pass the encrypted value securely

into the iframe. Please refer to Listing 6, lines 19-26, for the corre-

sponding property instrumentation code. The code for the update

operation is left out for brevity sake.

Within the iframe, a receiving script processes the incoming

value, passes it to the browser extension, which conducts the de-

cryption. Finally, the decrypted value is inserted into the isolated

DOM fragment within the iframe, and thus, presented to the user.

1 // Get all DIV-CMembrane placeholders from the document
2 var CMDivs =

document.querySelectorAll('div','[rel-crypto]');↩→

3

4 // Process the first CMembraneDIV
5 var odiv = CMDivs[0];
6

7 // Create ExtensionMembrane container
8 var exMemDiv = document.createElement("div");
9

10 // Store encrypted value
11 exMemDiv.cryptText = odiv.innerText;
12

13 // Create isolated iframe compartment
14 var EMframe = document.createElement("iframe");
15 EMframe.src="[origin of the extension]";
16 exMemDiv.appendChild(EMframe);
17 exMemDiv.compFrame = EMframe;
18

19 // Replace read/write element properties
20 Object.defineProperty(exMemDiv, "innerText", {
21 get: function(){return this.cryptText},
22 set: function (val) {
23 this.cryptText = val;
24 // Pass the encrypted value into the compartment
25 this.compFrame.contentWindow.postMessage(val,

[origin of the extension]);↩→

26 }});
27

28 // replace placeholder with ExtensionMembrane
29 odiv.parentNode.replaceChild(exMemDiv, odiv);

.

Listing 6: Creating a ExtensionMembraneElementand replac-
ing native data-access properties with value-passing meth-
ods – Exempli�ed with the innerText property



5.8 Interaction with the server-side
No speci�c actions are required by the extension to enable secure in-

teraction with the server-side, e.g., via FORM submission or sending

data via XMLHttpRequests. The user’s sensitive data always resides
within the untrusted DOM in encrypted form. The Extension-

MembraneElements are designed to maintain their full native

functionality, thus, e.g., on FORM submission, the encrypted val-

ues are reliably send to the server. The connection value-passing

JavaScript handlers ensure that whenever the user interacts with

the page and enters new values, the corresponding ciphertext is

updated accordingly in realtime.

5.9 Security assessment
Finally, in this section, we brie�y revisit the crucial security prop-

erties of the application scenario and show that they are satis�ed

by ExtensionMembranes.

5.9.1 Isolation properties. The isolation of the sensitive values

from the untrusted JavaScript is robustly enforced through the

browser’s native Same-origin Policy [29], as the content within the

iframe compartment is hosted within the unique extension origin.

5.9.2 Protection against code injection a�acks. As speci�ed in Sec-

tion 5.6, the compartment iframes carry a very strict and prohibitive

CSP, disabling all script execution. Thus, code injection attacks are

robustly thwarted.

5.9.3 Protection against ClickJacking a�acks. Finally, the adversary
could attempt to overlay Input ExtensionMembraneElements

with untrusted input elements. As keystrokes are never propagated

over the boundaries of web origins, any intercepted input never

reaches the attacked ExtensionMembraneElement. Thus, any

such attack would immediate lead to noticeable malfunctioning of

the application.

6 CONCLUSION
In this paper we proposed CryptoMembranes, an extension to the

web browser’s HTML and DOM-API which o�ers native support to

securely realize cloud-applications that leverage client-side encryp-

tion to protect user data against sever compromise. CryptoMem-

branes are designed to �t seamlessly into the currently existing

browser paradigm, due to their close mirroring of related DOM-

elements and their respective JavaScript interfaces. Thus, provided

the underlying cryptographic algorithms permit, they are out of the

box compatible with already existing client-side processing func-

tionality written in JavaScript, such as JavaScript UI frameworks

or libraries.

We �rmly believe that adding native and robust primitives for

client-side encryption to the web platform would be a key enabler

for new and exiting application scenarios, which are currently

infeasible due to the inherent shortcomings of the ecosystem.

7 ACKNOWLEDGMENT
This research was supported by the Lower Saxonian Ministry for

Science and Culture as part of the research program MOBILISE

(Mobility in Engineering and Science).

REFERENCES
[1] German-based, end-to-end encryption solution that integrates seamlessly with

dropbox. https://www.dropbox.com/app-integrations/boxcryptor. visited 2020-

07-28.

[2] Communicating securely with mailvelope. https://www.mailvelope.com/de. vis-

ited 2020-07-28.

[3] Priv.ly - share priv(ate).ly. https://priv.ly/.

[4] Sendsafely encryption for chrome and gmail. https://chrome.google.com/

webstore/detail/sendsafely-encryption-for/glpichgelkekjnccd�klcclhnoioblm.

visited 2020-07-30.

[5] Signal messenger. hhttps://signal.org.

[6] Threema messenger. https://threema.ch/.

[7] End-to-end encrypted �le sync & sharing. https://www.salesforce.com/

content/dam/web/en_us/www/documents/reports/wp-platform-encryption-

architecture.pdf. visited 2020-04-29.

[8] Whatsapp encryption overview. White paper, 2016.
[9] Html5 - the iframe element. https://www.w3.org/TR/2011/WD-html5-20110525/

the-iframe-element.html, 2017.

[10] AngularJS - Superheroic JavaScript MVW Framework. [online],

https://www.google.com/search?client=safari&rls=en&q=angular+js&ie=UTF-

8&oe=UTF-8, 2020.

[11] Introducing google cloud con�dential computing with con�dential vms.

https://cloud.google.com/blog/products/identity-security/introducing-google-

cloud-con�dential-computing-with-con�dential-vms, 2020.

[12] jQuery: The Write Less, Do More, JavaScript Library. [software], https://jquery.

com, 2020. visited 2020-04-29.

[13] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order

preserving encryption for numeric data. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, pages 563–574,

New York, NY, USA, 2004. ACM. ISBN 1-58113-859-8. doi: 10.1145/1007568.

1007632. URL http://doi.acm.org/10.1145/1007568.1007632.

[14] Eric Bidelman. Shadow dom v1: Self-contained web components. https:

//developers.google.com/web/fundamentals/web-components/shadowdom, 2017.

[15] Eric Y. Chen, Sergey Gorbaty, Astha Singhal, and Collin Jackson. Self-Ex�ltration:

The Dangers of Browser-Enforced Information Flow Control. In W2SP, 2012.
URL http://www.w2spconf.com/2012/papers/w2sp12-�nal11.pdf.

[16] M. H. Diallo, B. Hore, E. C. Chang, S. Mehrotra, and N. Venkatasubramanian.

Cloudprotect: Managing data privacy in cloud applications. In 2012 IEEE Fifth
International Conference on Cloud Computing, pages 303–310, June 2012. doi:

10.1109/CLOUD.2012.122.

[17] Michael Freyberger, Warren He, Devdatta Akhawe, Michelle L Mazurek, and

Prateek Mittal. Cracking shadowcrypt: Exploring the limitations of secure i/o

systems in internet browsers. Proceedings on Privacy Enhancing Technologies,
2018(2):47–63, 2018.

[18] Benny Fuhry, Walter Tighzert, and Florian Kerschbaum. Encrypting analytical

web applications. In Proceedings of the 2016 ACM on Cloud Computing Security
Workshop, CCSW ’16, pages 35–46, New York, NY, USA, 2016. ACM. ISBN 978-

1-4503-4572-9. doi: 10.1145/2996429.2996438. URL http://doi.acm.org/10.1145/

2996429.2996438.

[19] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the Forty-�rst Annual ACM Symposium on Theory of Computing, STOC ’09,

pages 169–178, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-506-2. doi:

10.1145/1536414.1536440. URL http://doi.acm.org/10.1145/1536414.1536440.

[20] Dimitri Glazkov and Hayato Ito. Shadow dom. working draft, w3c, june 2014,

2015.

[21] Tom Van Goethem, Mathy Vanhoef, Frank Piessens, and Wouter Joosen. Request

and Conquer: Exposing Cross-Origin Resource Size. In 25th USENIX Security
Symposium (USENIX Security), 2016.

[22] Warren He, Devdatta Akhawe, Sumeet Jain, Elaine Shi, and Dawn Song. Shad-

owcrypt: Encrypted web applications for everyone. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security, CCS ’14,

pages 1028–1039, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2957-6. doi:

10.1145/2660267.2660326. URL http://doi.acm.org/10.1145/2660267.2660326.

[23] Ian Hickson. The Web Sockets API. W3C Working Draft WD-websockets-

20091222, http://www.w3.org/TR/2009/WD-websockets-20091222/, December

2009. URL http://www.w3.org/TR/2009/WD-websockets-20091222/.

[24] Hayato Ito. Add closed �ag to createshadowroot (bugzilla: 20144). https://github.

com/w3c/webcomponents/issues/100, 2015.

[25] Joseph Menn. Facebook to expand encryption drive despite warn-

ings over crime. https://www.reuters.com/article/us-facebook-privacy-

encryption/facebook-will-widen-access-to-encryption-feature-test-safety-

measures-idUSKBN1XF2MJ, 2019.

[26] Marius Musch, Marius Ste�ens, Sebastian Roth, Ben Stock, and Martin Johns.

Scriptprotect: mitigating unsafe third-party javascript practices. In Proc. of ACM
Asia Conference on Computer and Communications Security (ASIA CCS), 2019.

[27] R. A. Popa, C. M. S. Red�eld, N. Zeldovich, and H. Balakrishnan. Cryptdb:

protecting con�dentiality with encrypted query processing. In Proceedings of the

https://www.dropbox.com/app-integrations/boxcryptor
https://www.mailvelope.com/de
https://priv.ly/
https://chrome.google.com/webstore/detail/sendsafely-encryption-for/glpichgelkekjnccdflklcclhnoioblm
https://chrome.google.com/webstore/detail/sendsafely-encryption-for/glpichgelkekjnccdflklcclhnoioblm
hhttps://signal.org
https://threema.ch/
https://www.salesforce.com/content/dam/web/en_us/www/documents/reports/wp-platform-encryption-architecture.pdf
https://www.salesforce.com/content/dam/web/en_us/www/documents/reports/wp-platform-encryption-architecture.pdf
https://www.salesforce.com/content/dam/web/en_us/www/documents/reports/wp-platform-encryption-architecture.pdf
https://www.w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html
https://www.w3.org/TR/2011/WD-html5-20110525/the-iframe-element.html
https://www.google.com/search?client=safari&rls=en&q=angular+js&ie=UTF-8&oe=UTF-8
https://www.google.com/search?client=safari&rls=en&q=angular+js&ie=UTF-8&oe=UTF-8
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://cloud.google.com/blog/products/identity-security/introducing-google-cloud-confidential-computing-with-confidential-vms
https://jquery.com
https://jquery.com
http://doi.acm.org/10.1145/1007568.1007632
https://developers.google.com/web/fundamentals/web-components/shadowdom
https://developers.google.com/web/fundamentals/web-components/shadowdom
http://www.w2spconf.com/2012/papers/w2sp12-final11.pdf
http://doi.acm.org/10.1145/2996429.2996438
http://doi.acm.org/10.1145/2996429.2996438
http://doi.acm.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/2660267.2660326
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://www.w3.org/TR/2009/WD-websockets-20091222/
https://github.com/w3c/webcomponents/issues/100
https://github.com/w3c/webcomponents/issues/100
https://www.reuters.com/article/us-facebook-privacy-encryption/facebook-will-widen-access-to-encryption-feature-test-safety-measures-idUSKBN1XF2MJ
https://www.reuters.com/article/us-facebook-privacy-encryption/facebook-will-widen-access-to-encryption-feature-test-safety-measures-idUSKBN1XF2MJ
https://www.reuters.com/article/us-facebook-privacy-encryption/facebook-will-widen-access-to-encryption-feature-test-safety-measures-idUSKBN1XF2MJ


23rd ACM Symposium on Operating Systems Principles (SOPS), 2011.
[28] Krishna P. N. Puttaswamy, Christopher Kruegel, and Ben Y. Zhao. Silverline:

Toward data con�dentiality in storage-intensive cloud applications. In Proceedings
of the 2nd ACM Symposium on Cloud Computing (SOCC’11), 2011.

[29] Jesse Ruderman. The Same Origin Policy. [online], http://www.mozilla.org/

projects/security/components/same-origin.html (01/10/06), August 2001. URL

http://www.mozilla.org/projects/security/components/same-origin.html.

[30] Alex Russell, Jungkee Song, Jake Archibald, and Marijn Kruisselbrink. Service

Workers. W3CWorking Draft, 2 November 2017, https://www.w3.org/TR/service-

workers-1/, 2017.

[31] E. Saleh and C. Meinel. Hpisecure: Towards data con�dentiality in cloud appli-

cations. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, pages 605–609, May 2013. doi: 10.1109/CCGrid.2013.109.

[32] Eric Shepherd. window.postmessage. [online], https://developer.mozilla.org/en/

DOM/window.postMessage, last accessed 02/12/12, October 2011. URL https:

//developer.mozilla.org/en/DOM/window.postMessage.

[33] Dawn Xiaoding Song, D. Wagner, and A. Perrig. Practical techniques for searches

on encrypted data. In Proceeding 2000 IEEE Symposium on Security and Privacy. S
P 2000, pages 44–55, 2000. doi: 10.1109/SECPRI.2000.848445.

[34] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. Data ex�ltration in

the face of csp. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, pages 853–864, 2016.

[35] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is still

ticking: Timing attacks in the modern web. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 1382–1393.
ACM, 2015.

[36] Anne van Kesteren. The XMLHttpRequest Object. W3C Working Draft, http:

//www.w3.org/TR/XMLHttpRequest, April 2008. URL http://www.w3.org/TR/

XMLHttpRequest/.

[37] W3C. Content Content Security Policy Level 3. W3C Editor’s Draft, 10 May

2017, https://w3c.github.io/webappsec-csp/, May 2017. URL https://w3c.github.

io/webappsec-csp/.

[38] W3C. Web components. https://github.com/w3c/webcomponents/issues/100,

2019. visited 2020-07-23.

[39] Eric S. Yuan. End to end encryption update. https://blog.zoom.us/end-to-end-

encryption-update/, 2020.

http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
https://www.w3.org/TR/service-workers-1/
https://www.w3.org/TR/service-workers-1/
https://developer.mozilla.org/en/DOM/window.postMessage
https://developer.mozilla.org/en/DOM/window.postMessage
https://developer.mozilla.org/en/DOM/window.postMessage
https://developer.mozilla.org/en/DOM/window.postMessage
http://www.w3.org/TR/XMLHttpRequest
http://www.w3.org/TR/XMLHttpRequest
http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-csp/
https://w3c.github.io/webappsec-csp/
https://github.com/w3c/webcomponents/issues/100
https://blog.zoom.us/end-to-end-encryption-update/
https://blog.zoom.us/end-to-end-encryption-update/

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Overview

	2 Problem Statement
	2.1 Principals and Security Objectives
	2.2 Partial Solution: Client-side Data Encryption
	2.3 Problem: Client-side Leakage of Private Data

	3 Related Work
	4 CryptoMembranes: Secure Client-side Encrypted Cloud Applications
	4.1 Core Concept
	4.2 Architecture
	4.3 CMembraneElements
	4.4 CMembraneElement Syntax:
	4.5 CMembraneElement Types
	4.6 Secure data entry for Input CMembraneElements
	4.7 Client-side programming using CMembraneElements
	4.8 CMembraneElement Element Overview

	5 ExtensionMembranes: Providing Isolated Crypto-elements for Legacy Browsers
	5.1 ExtensionMembranes: Overview
	5.2 Initial rewriting of custom ExtensionMembraneElements
	5.3 Subsequent rewriting of custom ExtensionMembraneElements on runtime
	5.4 Insertion of isolated compartments
	5.5 Initial decryption of existing data
	5.6 Rendering of the sensitive content
	5.7 Instantiation of JavaScript handlers for value-passing
	5.8 Interaction with the server-side
	5.9 Security assessment

	6 Conclusion
	7 Acknowledgment
	References

