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Abstract

We consider the problem of shared randomness-assisted multiple access channel (MAC) simulation for product
inputs and characterize the one-shot communication cost region via almost-matching inner and outer bounds in
terms of the smooth max-information of the channel, featuring auxiliary random variables of bounded size. The
achievability relies on a rejection-sampling algorithm to simulate an auxiliary channel between each sender and the
decoder, and producing the final output based on the output of these intermediate channels. The converse follows
via information-spectrum based arguments. To bound the cardinality of the auxiliary random variables, we employ
the perturbation method from [Anantharam et al., IEEE Trans. Inf. Theory (2019)] in the one-shot setting. For
the asymptotic setting and vanishing errors, our result expands to a tight single-letter rate characterization and
consequently extends a special case of the simulation results of [Kurri et al., IEEE Trans. Inf. Theory (2022)] for
fixed, independent and identically distributed (iid) product inputs to universal simulation for any product inputs.

We broaden our discussion into the quantum realm by studying feedback simulation of quantum-to-classical
(QC) MACs with product measurements [Atif et al., IEEE Trans. Inf. Theory (2022)]. For fixed product inputs and
with shared randomness assistance, we give a quasi tight one-shot communication cost region with corresponding
single-letter asymptotic iid expansion.

I. MOTIVATION

The channel simulation problem deals with the task of quantifying the minimum amount of communication
required to establish correlation remotely, as dictated by the input-output joint distribution of the channel to be
simulated. The most basic point-to-point channel simulation setup consists of an encoder-decoder pair that with
access to shared randomness and communication over a noiseless rate-limited link achieves the channel simulation
task. More specifically, the encoder observes a random variable, say X with distribution qX , and based on the shared
randomness, sends a message to the decoder. Based on this message and shared randomness, the decoder outputs a
random variable Y . The aim of the protocol is to ensure that the trace distance between the joint distribution (X,Y )
and the joint distribution induced by passing the source X through a discrete memoryless channel q(Y |X) is as
small as possible. The channel simulation task is closely related to the task of creating a desired joint distribution
between two distributed parties, also known as strong coordination [1].

Here, we consider the problem of simulating a two-sender classical and quantum to classical multiple-access
channel (MAC). We assume that the respective encoders and decoder have access to unlimited shared randomness.
This framework was first investigated by Bennett et al. [2] to establish a so-called ‘reverse Shannon theorem’ to
simulate a noisy channel from a noiseless channel in the asymptotic independent and identically distributed (iid)
regime. They showed that the least communication cost for this purpose is equal to the mutual information, I(X;Y ),
between the input and output of the channel. The minimum one-shot rate for simulating a point-to-point classical
channel was ascertained in [3]. Extensions to broadcast channels were obtained in [3], and recently extended to the
quantum setting [4].

In both the point-to-point and broadcast channel simulation tasks, one may gain intuition from the scheme
achieving the minimal communication rate as follows. Consider the case of point-to-point channel simulation:
since both the encoder, say Alice, and the decoder, Bob, knows the channel to be simulated, Alice can determine
the channel output at her end and then compress it ‘optimally’ and send it to Bob using the rate limited link.
Bob then just outputs the target sequence after decompressing what he received from Alice. Similar intuition also
works for the broadcast channel simulation problem. However, this approach breaks down for the MAC since there
are two senders involved. More specifically, although each sender knows the MAC to be simulated, they cannot
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"locally" simulate the channel since the input of the other sender is unknown. Hence, novel schemes are required to
circumvent this technical hurdle, which we address in this work. As such, While there is a comprehensive literature
on simulating a point-to-point channel (both classical and quantum, in one-shot and asymptotic iid setting) and
broadcast channel, only some more restricted results are known for MACs. In this regard, bounds on the asymptotic
rate region for MAC simulation with fixed iid inputs were previously given in [5]. The inner bounds were derived
by using the so-called OSRB technique of Yassaee et al. [6] and a matching outer bound for the case of fixed
iid product inputs and shared randomness assistance was proven by using the continuity property of the mutual
information.

Our main results are as follows:

• We obtain the one-shot cost region for simulating a MAC with two independent classical inputs (X1, X2) and
a single classical output Y , where the MAC is represented by the conditional probability distribution qY |X1,X2

.
We characterize the cost region, first for fixed product inputs in Theorem 1, and then for universal simulation
with arbitrary product inputs in Theorem 2. In order to simulate qY |X1,X2

, for j ∈ {1, 2}, encoder Ej of the
sender j sends a message Mj ∈ [1 : 2Rj ] to the decoder D over their respective noiseless links based on their
individual observations and shared randomness with the decoder. We assume unlimited shared randomness
S1 (|S1| = ∞) between E1 and D and S2 (|S2| = ∞) between E2 and D. Since there is neither a one-shot nor
a universal analogue of the Yassaee et al. [6] OSRB techniques with the desired one-shot entropic quantity —
which happens to be smoothed max mutual information in our case — this makes ours the first work towards
simulating a MAC in the one-shot and universal regime.

• We specialize our result to the asymptotic iid setting and show that it recovers [5, Theorem 1] for fixed product
iid inputs as Corollary 1.1 of Theorem 1, whereas we obtain a new single-letter formula for the universal case
of arbitrary (not necessarily iid) product inputs in Corollary 2.1.

• We tightly characterize the one-shot cost and asymptotic rate region for simulating classical scrambling
quantum-inputs and classical output MACs with feedback in Theorem 3 and Corollary 3.1, respectively. This
is referred to as classical scrambling QC-MAC with feedback, where feedback denotes the property that the
classical inputs to the scrambler should also be available at the sender(s) after the simulation protocol has been
executed.

Technical contributions: A general recipe to obtain an inner bound on the rate region is applying the simple yet
widely applicable technique of rejection sampling. One of the main technical hurdles, besides unavailability of both
the inputs at the encoders, preventing the import of earlier results is that this task cannot be seen as naively carrying
out two point-to-point channel simulation. The main reason is the fact that the output must be correlated with both
the inputs. This is resolved by defining appropriate auxiliary random variables, which are quantized versions of
the respective inputs such that they approximately simulate the channel. The distribution of these auxiliary random
variables can equivalently be viewed as point-to-point channel and hence we use these to decompose MAC into
two point-to-point channels. We also give the bounds on the cardinality of these auxiliary random variables in the
one-shot setting for smoothed mutual information, which is rarely studied like [7] and the only known work to the
best of our knowledge. But their technique of the so-called generalized support lemma does not suffice for the task
of MAC simulation due to an extra requirement of preserving the property that the output should be generated in
correlation with auxiliary random variables. Hence we apply for the first time, the perturbation technique developed
by Anantharam et al. [8] for obtaining the cardinality bounds on auxiliary random variables for the smoothed
max-mutual information.

II. NOTATION

The random variables are denoted by capital letters and their alphabets by scripted letters, for example, X is
a random variable with alphabet X , distributed according to pX . pX is also the probability vector with the set
of non-zero entries denoting its support represented by supp(pX). Analogously, we denote any finite dimensional
Hilbert space for quantum setting by H. For brevity of notation, we use X⃗ to denote a finite length sequence of
random variables {Xi}i<I , where I is any index set. The notation [1 : n] is used as a shorthand to denote the
discrete set {1, 2, . . . , n}. Expectation of a random variable is denoted by E. We use the abbreviation p.m.f. to
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mean the probability mass function of the underlying discrete valued random variable. The set of all probability
vectors is denoted by P and sub-distribution vectors by P≤ and analogously the set of all density operators in H is
denoted by D or D(H) and sub-states, that is, positive semi-definite operators with trace less than or equal to 1 by
D≤. For p, q ∈ P , the notation p ≪ q means that supp(p) ⊆ supp(q). h2(ε) is the binary entropy of distribution
{ε, 1 − ε}, for ε ∈ (0, 1). It is defined as h2(ε) := −ε log2 ε − (1 − ε) log2(1 − ε). We use the notation ||·||1 to
denote the ℓ1 norm of a vector, which is the sum of absolute value of its components and it denotes the Schatten
1-norm of the underlying operator. We use ||x− y||tvd :=

||x−y||
1

2 to denote the total variation distance between
two vectors or operators. We define the joint distribution over a set of random variables by small case letters with
the subscript denoting the random variables and the distribution restricted to a subset of random variables denotes
their marginal. For example pX1,X2,...,Xn

denotes a joint distribution on the random variables X1, X2, . . . , Xn and
pX1,X2

denotes the marginal on X1, X2 (by summing over the random variables X3, X4, . . . , Xn). For brevity of
notation we also define pX⃗ := pX1,X2,...,Xn

. The notation X ∼ q indicates that the random variable X is distributed
according to p or the p.m.f. of X is p and X

ε∼ q means that the p.m.f. p of X is ε-close to the p.m.f. q in
the total variation distance. We also use the notation p

ε
≈ q to denote that ||p− q||tvd ≤ ε. We use the notation

p ≪ q, to mean that the p.m.f. p is absolutely continuous with respect to the p.m.f. q, with emphasis on the
property that the supp(p) ⊆ supp(q). The notation 11A denotes the indicator random variable which takes a value
1 if event A occurs and is zero otherwise. Scripted letters denotes the encoders, decoders and channels. cl{S}
denotes the closure of the set S. For conditional distributions pY |X and qY |X , the total variation distance is defined
as
∣∣∣∣pY |X − qY |X

∣∣∣∣
tvd

:= max
x

∣∣∣∣pY |X=x − qY |X=x

∣∣∣∣
tvd

. We use tvd as our distance measure unless stated otherwise.
All the alphabets and the dimensions of classical and/or quantum systems are finite. The notation A ∼= B is used
to mean that the systems A and B are isomorphic to each other.

We now give the definitions of the entropic quantities used in this work.

Definition 1: The max divergence between any two probability distributions p and q on the support X is defined
as

Dmax(p||q) := logmax
x∈X

[p(x)/q(x)]

One then defines the notion of max-mutual information of a joint distribution pX,Y from Dmax as follows.

Definition 2: For a given bipartite distribution pX,Y the max-mutual information is defined as [9]

Imax(X;Y )p := inf
qY ∈P(Y)

Dmax(pX,Y ||pX × qY ) = inf
qY ∈P(Y)

max
x

Dmax(pY |X=x||qY ) .

and the ε-smoothed max-mutual information of pX,Y := pXpY |X for ε ≥ 0 is defined as [10]

Iεmax(X;Y )p := inf
p′
X,Y ∈Bε(pX,Y )

Imax(X;Y )p′ = inf
p′
X,Y ∈Bε(pX,Y )

inf
qY ∈P(Y)

max
x,y

log
p′Y |X(y|x)
qY (y)

(1)

where Bε(pX,Y ) := {p′X,Y ∈ P : p′X = pX and E
pX

∥pY |X − p′Y |X∥tvd ≤ ε}.

We now define the smoothed max-mutual information of channel using the notion of max-mutual information
defined above.

Definition 3 (Channel smoothed max-mutual information): Let pY |X denote a channel with input X and output
Y . Let X ∼ pX be a given input. Then for any given ε > 0: The ε-smoothed max-mutual information of the
channel pY |X is defined as [11]:

Iεmax(pY |X) := inf
p′
Y |X∈Bε(pY |X)

inf
qY ∈P(Y)

max
x

Dmax(p
′
Y |X=x||qY ) = inf

p′
Y |X∈Bε(pY |X)

inf
qY ∈P(Y)

max
x,y

log
p′Y |X(y|x)
qY (y)

(2)

where Bε(pY |X) := {p′Y |X ∈ P : max
x

∥pY |X=x − p′Y |X=x∥tvd ≤ ε}.

One defines the analogous smoothed max-mutual information for bipartite quantum states as follows [10]:
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Definition 4 (State smoothed max-mutual information): The smoothed quantum max-mutual information is
defined as

Iεmax(A;B)ρ := inf
ρ′AB∈Bε(ρAB)

inf
σB∈D(HB)

Dmax(ρ
′AB||ρA ⊗ σB), (3)

where
Dmax(ρ||σ) := inf{λ : ρ ≤ 2λσ} = log∥σ−1/2ρσ−1/2∥∞

and Bε(ρAB) :=
{
ρ

′AB ∈ D(H) : TrB(ρ
′) = TrB(ρ), ∥ρ− ρ′∥tvd ≤ ε

}
.

In the following, we use the term rate region or cost or cost region interchangeably to mean the amount of
classical communication used (or charged for) in the simulation protocol and formally is the set of rate tuples
(R1, R2) that ensures MAC simulation.

III. ONE-SHOT COST REGION FOR FIXED PRODUCT INPUT MAC SIMULATION

A. Task

We start by giving the formal definition of a 2-user MAC channel simulation code, described in Figure III-A.

Definition 5 (Classical MAC simulation with fixed input): An (R1, R2, ε) simulation protocol for a 2-independent
user MAC qY |X1X2

with inputs qX1
× qX2

and access to unlimited shared randomness between Sender1S1↔ Receiver

and Sender2S2↔ Receiver, consists of:

• A pair of encoders of form E1 × E2, such that: Ej : Xj × Sj → Mj :=
[
1 : 2Rj

]
for j ∈ {1, 2};

• Two independent noiseless rate-limited links of rate Rj , j ∈ {1, 2} and;
• A decoder D : M1 × S1 ×M2 × S2 → Y;
• The overall joint distribution induced by the encoder-decoder pair is given by

pX1,X2,S1,S2,M1,M2,Y =

[
D ◦

(
2
×
j=1

Ej
)]{

2
×
j=1

(
qXj

× pSj

)}
s.t.

||pX1,X2,Y − qX1,X2,Y ||tvd = E
qX1

×qX2

∣∣∣∣pY |X1,X2
− qY |X1,X2

∣∣∣∣
tvd

≤ ε . (4)

The rate region R(ε) for simulating MAC is defined as the closure of the set of all rate pairs (R1, R2) as given
above satisfying (4).

In this section, we henceforth consider pX1,X2,U1,U2,Y to be a p.m.f. of the form:

pX1,X2,U1,U2,Y = qX1
qX2

pU1|X1
pU2|X2

pY |U1,U2
. (5)

We now define the following regions that will turn out to be inner and outer bounds for characterizing the rate
region R(ε) for the task of one-shot MAC simulation given in Definition 5.

Definition 6: Let ε ∈ (0, 1), and ε1, ε2, δ ∈ (0, 1) be such that δ < min{ε1, ε2} and ε1 + ε2 ≤ ε. Let
Rinner(ε1, ε2, δ) be the set of non-negative real numbers (R1, R2) defined as:

Rinner(ε1, ε2, δ) = cl


⋃

(pU1|X1
,pU2|X2)∈Ainner

{
(R1, R2) : Rj ≥ Iεj−δ

max (Xj ;Uj)qXj
pUj |Xj

+ log log
1

δ
; j ∈ {1, 2}

} ,

(6)

where

Ainner :=
{(
pU1|X1

, pU2|X2

)
: ∃pY |U1,U2

satisfying pX1,X2,Y = qX1,X2,Y

}
. (7)
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Fig. 1. MAC Simulation: Encoders Ej : (Xj , Sj)
rejection−−−−−−→
sampling

Mj , Decoder D : (M1,M2, S1, S2) 7→ Y ; ≈ε denotes closeness in tvd.

Similarly, let Router(ε1, ε2) be the set of non-negative real numbers defined as:

Router(ε1, ε2) = cl


⋃

(pU1|X1
,pU2|X2)∈Aouter

ε

{
(R1, R2) : Rj ≥ Iεjmax(Xj ;Uj)qXj

pUj |Xj
for j ∈ {1, 2}

} , (8)

where

Aouter
ε :=

{(
pU1|X1

, pU2|X2

)
: ∃ pY |U1,U2

satisfying ∥pX1,X2,Y − qX1,X2,Y ∥tvd ≤ 2ε, |U1|, |U2| ≤ |X1||X2||Y|
}
.
(9)

The following characterization is our main result in this section.

Theorem 1: Let qY |X1,X2
be a given 2-sender, 1-receiver MAC with input qX1

× qX2
. For any ε ∈ (0, 1), and

ε1, ε2, δ ∈ (0, 1) be such that δ < min{ε1, ε2}) and ε1 + ε2 ≤ ε, one-shot rate region for simulation of MAC
satisfies:

Rinner(ε1, ε2, δ) ⊆ R(ε) ⊆ Router(ε1, ε2), (10)

where the inner (Rinner
U (ε1, ε2, δ)) and the outer (Router

U (ε1, ε2)) bounds are as defined in Definition 6.

The proof comprises of two parts, direct part or achievability as shown in Lemma 1.1 and converse as proven
in Lemma 1.2.

Remark 1.1: Note that Rinner(ε1, ε2, δ) and Router(ε1, ε2) characterize the one-shot rate region R(ε) (for ε =
ε1+ε2) up to a fudge factor that depends on δ. Also, the characterization of R(ε) in terms of Rinner(ε1, ε2, δ) and
Router(ε1, ε2) in Theorem 1 does not involve any sum-rate constraints. This is due to the availability of infinite
shared randomness between both the sender-receiver pairs. The output Y plays a role in this characterization through
the Markov chain (X1, X2) → (U1, U2) → Y under the distribution pX1,X2,U1,U2,Y .

B. Achievability

Lemma 1.1: For any given ε > 0, let ε1, ε2 > 0 be such that ε1 + ε2 ≤ ε and δ ∈ (0,min{ε1, ε2}). Then,
Rinner(ε1, ε2, δ) ⊆ R(ε).
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Proof: Fix (ε1, ε2, δ) satisfying the conditions in the lemma and let qX1
× qX2

be the fixed input distribution.
We need to show that for any (R1, R2) ∈ Rinner(ε1, ε2, δ) (defined in (6)), there exists an (R1, R2, ε) one-shot
MAC simulation protocol as mentioned in Definition 5.

Idea: We will use the point-to-point channel simulation algorithm of Fact 2-(i) independently at the two senders.

• Sender-j: Let sUj
be a distribution with full support and choose Uj ∼ sUj

as the shared randomness between
the pair (Ej ,D). Using the rejection sampling algorithm stated in Fact 1, sender j sends the appropriately
chosen index of the shared randomness using Rj bits to perform point-to-point channel simulation for the
auxiliary channel pUj |Xj

.

• Decoding: After receiving the transmitted index of shared randomness from both the encoders, the decoder
first generates {Uj}2j=1 and applies the stochastic map pY |U1,U2

to simulate qY |X1,X2
.

• The output distribution of Uj at D is denoted by palgoUj |Xj
and satisfies (from Fact 2-(i)) :∣∣∣∣pUj ,Xj

− qUj ,Xj

∣∣∣∣
tvd

= E
qXj

∣∣∣∣∣∣palgoUj |Xj
− pUj |Xj

∣∣∣∣∣∣
tvd

≤ εj . (11)

The amount of classical communication required for this task is given by (see Fact 2-(i)):

Rj ≥ Iεj−δ
max (Xj ;Uj)p + log log

1

δ
.

Thus, our algorithm results in the overall distribution

palgoX1,X2,U1,U2,Y
= qX1

× qX2
× palgoU1|X1

× palgoU2|X2
pY |U1,U2

. (12)

To complete the proof, we need to show

E
qX1

×qX2

∥palgoY |X1,X2
− qY |X1,X2

∥tvd ≤ ε1 + ε2.

This follows by the following chain of inequalities:

E
qX1

×qX2

∥palgo
Y |X1,X2

− qY |X1,X2
∥tvd

(a)

≤ E
qX1×qX2

∥palgo
Y |X1,X2

− pY |X1,X2
∥tvd + E

qX1×qX2

∥pY |X1,X2
− qY |X1,X2

∥tvd

(b)
= E

qX1×qX2

∥∥∥∥ Σ
u1,u2

pY |U1=u1,U2=u2

(
palgo
U1|X1

(u1)p
algo
U2|X2

(u2)− pU1|X1
(u1)pU2|X2

(u2)
)∥∥∥∥

tvd

= E
qX1

×qX2

Σ
u1,u2

Σ
y
pY |U1,U2

(y|u1, u2)
∣∣∣(palgo

U1|X1
(u1)p

algo
U2|X2

(u2)− pU1|X1
(u1)pU2|X2

(u2)
)∣∣∣

(c)

≤ E
qX1

×qX2

∥palgo
U1|X1

palgoU2|X2
− palgoU1|X1

pU2|X2
∥tvd + E

qX1
×qX2

∥palgo
U1|X1

pU2|X2
− pU1|X1

pU2|X2
∥tvd

= E
qX1

∥palgo
U1|X1

∥1 E
qX2

∥palgoU2|X2
− pU2|X2

∥tvd + E
qX2

∥pU2|X2
∥1 E

qX1

∥palgo
U1|X1

− pU1|X1
∥tvd

(d)

≤ ε1 + ε2 ,

where (a) and (c) follow from triangle inequality; (b) follows from the definition of distribution induced by the
code in (12); and (d) follows from (11). Thus, we have shown that Rinner(ε1, ε2) ⊆ R(ε).

C. Converse

Lemma 1.2: For any given ε ∈ (0, 1), let ε1, ε2 > 0 be such that ε = ε1 + ε2. Then, R(ε) ⊆ Router(ε1, ε2).

Proof: Let (ε1, ε2) and ε satisfy the conditions of the lemma. We need to show that any (R1, R2, ε) MAC
simulation protocol according to Definition 5 has (R1, R2) ∈ Router(ε1, ε2) (defined in (8)).
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Consider a MAC simulation protocol with the overall distribution as
2⊗

j=1

(
qXj

qSj
p′Mj |Sj ,Xj

)
p′
Y |M⃗,S⃗

. The encoders

are specified by p′M1|X1,S1
and p′M2|X2,S2

, and the decoder is specified by p′Y |M1,M2,S1,S2
. Since, the code is a

faithful simulation code, we have from Definition 5:∣∣∣∣p′X1,X2,Y − qX1,X2,Y

∣∣∣∣
tvd

= E
qX1

×qX2

∣∣∣∣∣∣p′Y |X1,X2
− qY |X1,X2

∣∣∣∣∣∣
tvd

≤ ε = ε1 + ε2. (13)

One of the difficulties in using the standard converse based on information non-locking property of Imax (see e.g.
[11, Theorem 5]) is the identification of the auxiliary random variables (U1, U2) that are essential for characterizing
R(ε). Hence, we give a proof inspired from the information spectrum approach (e.g. [12], [13]). The main element
of the proof is eliminating a small probability subset of the message and shared randomness for every input symbol.
Then, we identify the auxiliary Uj (for j ∈ {1, 2}) as the tuple of message and the shared randomness restricted to
the complement of the above eliminated set. The same intuition applies to the proof of outer bounds of Lemmas 2.2
and 3.2. The formal description now follows.
We now define the following set for every 2-tuple x⃗ = (x1, x2)

C̄x⃗ :=

{
(m⃗, s⃗) : p′Mj |Sj ,Xj

(mj |sj , xj) ≥
εj

|Mj |
, j = 1, 2

}
. (14)

We henceforth denote the projection of Cx⃗ onto (Mj , Sj , Xj) (or the jth user) as Cxj
and we make the similar

identification for their respective complements.
Note that by union bound, we have

Pp′(Cx⃗) ≤
2∑

j=1

P
({

p′Mj |Sj ,Xj
(mj |sj , xj) ≤

εj
|Mj |

})
≤ ε1 + ε2, (15)

where we have used:

Pp′(Cxj
) := Pp′

({
(mj , sj) : p

′
Mj |Sj ,Xj

(mj |sj , xj) ≤
ε

|Mj |

})
=

∑
(mj ,sj):p′

Mj |Sj,Xj
(mj |sj ,xj)≤

εj

|Mj |

p′Sj
(sj)p

′
Mj |Sj ,Xj

(mj |sj , xj)

≤
∑

(mj ,sj)

εj
|Mj |

qSj
≤ εj . (16)

Hence, Pp′(C̄x⃗) ≥ 1− ε1 − ε2, for all x⃗.
Consider the distribution defined as follows:

pMj ,Sj |Xj
(mj , sj |xj) :=


p′
Sj

(sj)p′
Mj |Sj,Xj

(mj |sj ,xj)

Pp′ (C̄xj
)

, if mj , sj ∈ C̄xj

0 otherwise .
(17)

We have thus identified the auxiliary random variable {Uj}2j=1 for each xj as:

Uj := (Mj , Sj)11C̄xj
≡ pUj |Xj

(uj |xj) := pMj ,Sj |Xj
(mj , sj |xj) =

p′Sj
(sj)p

′
Mj |Sj ,Xj

(mj |sj , xj)11(mj ,sj)∈C̄xj

Pp′(C̄xj
)

.

Using this we identify the conditional distribution pU⃗,Y |X⃗ (for every x⃗) as:

pU⃗,Y |X⃗(u⃗, y|x⃗) :=



2⊗
j=1

[
p′
Sj

(sj)p′
Mj |Sj,Xj

(mj |sj ,xj)

Pp′ (C̄xj
)

]
p′
Y |S⃗,M⃗

(y|s⃗, m⃗), if mj , sj ∈ C̄xj(
=

2⊗
j=1

[
p′
Uj |Xj

(uj |xj)11mj,sj∈C̄xj

Pp′ (C̄xj
)

]
p′
Y |U⃗

(y|u⃗)

)
,

0, otherwise .

(18)
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Now, we identify the complete joint distribution p defined as follows:

pX⃗,U⃗,Y (x⃗, u⃗, y) :=


2⊗

j=1

[
qXj

(xj)p′
Uj |Xj

(uj |xj)

Pp′ (C̄xj
)

]
p′Y |U1,U2

(y|u1, u2), if (u⃗) ∈ C̄x⃗

0, otherwise .

(19)

Note that (16) also gives:

E
qX⃗

∣∣∣∣∣∣pY |X⃗=x⃗ − p′
Y |X⃗=x⃗

∣∣∣∣∣∣
tvd

= E
qX⃗

∣∣∣∣∣∣∣∣ Σ
m⃗,s⃗

(
pM⃗=m⃗,S⃗=s⃗|X⃗ − p′

M⃗=m⃗,S⃗=s⃗|X⃗

)
p′
Y |M⃗=m⃗,S⃗=s⃗

∣∣∣∣∣∣∣∣
tvd

≤

∑⃗
x

qX1
(x1)qX2

(x2)

[ ∑
(m⃗,s⃗)

p(m1, s1|x1) |p(m2, s2|x2)− p′(m2, s2|x2)|

]
2

+

∑⃗
x

qX1
(x1)qX2

(x2)

[ ∑
(m⃗,s⃗)

p′(m2, s2|x2) |p(m1, s1|x1)− p′(m1, s1|x1)|

]
2

≤
∑
x⃗

qX1
(x1)qX2

(x2)
∑

(m1,s1)

p(m1, s1|x1)× (20)

[ ∑
(m2,s2)∈C̄x2

|p(m2, s2|x2)− p′(m2, s2|x2)|+
∑

(m2,s2)∈Cx2

|p(m2, s2|x2)− p′(m2, s2|x2)|

]
2

+
∑
x⃗

qX1
(x1)qX2

(x2)
∑

(m2,s2)

p′(m2, s2|x2)]× (21)

[ ∑
(m1,s1)∈C̄x1

|p(m1, s1|x1)− p′(m1, s1|x1)|+
∑

(m1,s1)∈Cx1

|p(m1, s1|x1)− p′(m1, s1|x1)|

]
2

=

∑
x2

qX2
(x2)

[ ∑
(m2,s2)∈C̄x2

p′(m2, s2|x2)
∣∣∣ 1
Pp′ (C̄x2

)
− 1
∣∣∣+ ∑

(m2,s2)∈Cx2

p′(m2, s2|x2)

]
2

+

∑
x1

qX1
(x1)

[ ∑
(m1,s1)∈C̄x1

p′(m1, s1|x1)
∣∣∣ 1
Pp′ (C̄x1 )

− 1
∣∣∣+ ∑

(m1,s1)∈Cx1

p′(m1, s1|x1)

]
2

=

2
∑
x1

qX1
(x1)Pp′(Cx1

) + 2
∑
x2

qX2
(x2)Pp′(Cx2

)

2
≤ ε1 + ε2 . (22)

Finally, we define the following distribution on the random variable Uj(= (Mj , Sj)) that will be used to evaluate
the quantity Iεmax(Xj ;Uj)p for j ∈ {1, 2}:

rUj
(uj) := qSj

(sj)
1

|Mj |
(23)

These identifications leads to the following implications on the rate of the protocol:

2I
εj
max(Xj ;Uj)p

(a)

≤ 2
Dmax(p′

Xj,Uj
||p′

Xj
×rUj

)

= max
xj

max
uj

p′Xj ,Uj
(xj , uj)

p′Xj
(xj)rUj

(uj)
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(b)
= max

xj

max
(mj ,sj)

qSj
(sj)p

′
Mj |SjXj

(mj |sj , xj)
qSj

(sj)/|Mj |
(c)

≤ |Mj |, (24)

where (a) follows from the definition of smoothed Imax in Definition 3 and observing that distribution pUj |Xj=xj
=

pMj ,Sj |Xj=xj
∈ Bεj (p′Mj ,Sj |Xj=xj

) because:

E
qXj

∣∣∣∣∣∣pUj |Xj
− p′Uj |Xj

∣∣∣∣∣∣
tvd

=
1

2

∑
xj

qXj
(xj)

∑
mj ,sj

∣∣∣p′Mj ,Sj |Xj
(mj , sj |xj)− pMj ,Sj |Xj

(mj , sj |xj)
∣∣∣

=
1

2

∑
xj

qXj
(xj)

 ∑
mj ,sj∈C̄xj

p′Mj ,Sj |Xj
(mj , sj |xj)

(
1

Pp′(C̄xj
)
− 1

)

+
∑

mj ,sj∈Cxj

p′Mj ,Sj |Xj
(mj , sj |xj)


= Pp′(Cxj

) ≤ εj (from (16));

(b) follows from the identification of Uj = (Mj , Sj) for all p′ and the Bayes rule and
(c) follows since p′Mj ,Sj |Xj

(mj , sj |xj) ≤ 1 and the definition of rj(Uj).
We thus have from (24), the rate of the code is lower bounded by:

Rj = log |Mj | ≥ Iεjmax(Xj ;Uj)p for j ∈ {1, 2}.

From (22) we have that pY |X⃗=x⃗ ∈ Bε1+ε2(p′
Y |X⃗=x⃗

). This along with the simulation constraint of (13) yields by the
triangle inequality:

||pX1,X2,Y − qX1,X2,Y ||tvd ≤ 2(ε1 + ε2).

Hence, we have shown that for any (R1, R2, 2(ε1+ ε2))-simulation code the rate of the code is bounded below by:

Rj ≥ Iεjmax(Xj ;Uj)p.

To complete the proof, we state the bound on the cardinalities of U1, U2 as Lemma 1.3 below.

Lemma 1.3: The cardinalities of {U1,U2} for the region Router can be upper bounded as:

|Uj | ≤ |X1||X2||Y|; for j ∈ {1, 2} . (25)

The proof of Lemma 1.3 is shown in Appendix B.

IV. ASYMPTOTIC IID EXPANSION

We now evaluate the asymptotic limit of the iid expansion our one-shot simulation result and show that the
cost region in this regime is single-letterized. This recovers a special case of [5, Theorem 1 and Theorem 4] with
independent inputs and no side information at the decoder.

For the sake of clarity we start by giving the formal definition of an n-letter MAC channel simulation code.

Definition 7 (Classical MAC simulation with fixed input): An (nR1, nR2, ε) simulation protocol for simulating
q⊗n
Y |X1X2

with inputs q⊗n
X1

× q⊗n
X2

and access to unlimited shared randomness between Sender1S1↔ Receiver and

Sender2S2↔ Receiver, consists of:

• A pair of encoders of form E(n)
1 × E(n)

2 , such that: E(n)
j : X (n)

j × S(n)
j → Mj :=

[
1 : 2nRj

]
for j ∈ {1, 2};

• Two independent noiseless rate-limited links of rate Rj , j ∈ {1, 2} and;
• A decoder D(n) : M1 × S(n)

1 ×M2 × S(n)
2 → Y(n);
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• The overall joint distribution induced by the encoder-decoder pair is given by

pXn
1 ,X

n
2 ,S

n
1 ,S

n
2 ,M1,M2,Y n =

[
D(n) ◦

(
2
×
j=1

E(n)
j

)]{
2
×
j=1

(
q⊗n
Xj

× p
(n)
Sj

)}
s.t. ∣∣∣∣∣∣pXn

1 ,X
n
2 ,Y

n − q⊗n
X1,X2,Y

∣∣∣∣∣∣
tvd

≤ ε . (26)

The asymptotic iid rate region Riid for simulating MAC is defined as the closure of the set of all rate pairs (R1, R2)
as given above satisfying (26) in the limit n→ ∞ followed by ε→ 0.

Henceforth, in this section, we consider pX1,X2,U1,U2,Y to be a p.m.f. of the form given in (5).

Corollary 1.1: [5, Theorem 1 and Theorem 4] The cost region for simulating a MAC channel qY |X1,X2
with

fixed inputs qX1
× qX2

, using rate limited links of rate (R1, R2) and infinite shared randomness between each
sender-receiver pair, in the asymptotic iid limit is given by:

Riid = cl


⋃

pX1,X2,U1,U2,Y :
(X1,X2)→(U1,U2)→Y ;
& pX1,X2,Y =qX1,X2,Y ,
|U1|,|U2|≤|X1||X2||Y|

{
(R1, R2) : Rj ≥ I(Xj ;Uj)qXj

pUj |Xj
; j ∈ {1, 2}

}

. (27)

Proof: Asymptotic iid Inner Bound: The one-shot inner bound can be straight away extended to obtain the
optimal asymptotic iid rate region. Let (R1, R2) ∈ Riid be such that for any η > 0,

Rj ≥ I(Xj ;Uj)p + η for some pX1,X2,U1,U2,Y = qX1
qX2

pU1|X1
pU2|X2

pY |U1,U2
: pX1,X2,Y = qX1,X2,Y . (28)

Consider

pXn
1 ,X

n
2 ,U

n
1 ,Un

2 ,Y n = q⊗n
X1
q⊗n
X2
p⊗n
U1|X1

p⊗n
U2|X2

p⊗n
Y |U1,U2

. (29)

The AEP for the smoothed max-mutual information (see (100) of Fact 8) yields

lim
n→∞

1

n

[
Iεj−δ
max (Xn

j , U
n
j )pn + log log

(
1

δ

)]
= I(Xj ;Uj)p,

which by (28) means that

nRj ≥ Iεj−δ
max (Xn

j , U
n
j )pn + log log

1

δ
, (30)

for all sufficiently large n (depending on η). This implies that Riid ⊆ R(n)
inner(ε1, ε2), where

R(n)
inner(ε1, ε2) =

{
(R1, R2) : nRj ≥ Iεj−δ

max (Xn
j ;U

n
j )p + log log

1

δ
; for j ∈ {1, 2}

}
. (31)

Asymptotic iid Outer Bound: First note that obtaining the asymptotically optimal outer bound is not so straight
forward as the n-fold extension of the random variable U need not be iid. So, we prove a weak converse. In order
to do so, for any ε ∈ (0, 1) we first define the following so-called ε-approximate iid region as follows:

Riid(ε) :=
{
(R1, R2) : Rj ≥ I(Xj ;Uj)p,∀ pX1,X2,U1,U2,Y = qX1

qX2
pU1|X1

pU2|X2
pY |U1,U2

such that ||pX1,X2,Y − qX1,X2,Y ||tvd ≤ ε
}

(32)

For any ε ∈ (0, 1) and ε1, ε2 > 0 such that max{ε1, ε2} ≤ ε/4, let R(n)
outer(ε1, ε2, ε) be the n-fold extension of the

region Router(ε1, ε2, ε) with respect to the input and auxiliary random variables (Xn
j , U

n
j ) ∼ q⊗n

Xj
pUn

j |Xn
j

, i.e.

R(n)
outer(ε1, ε2, ε) =

{
(R1, R2) : nRj ≥ Iεjmax(X

n
j ;U

n
j )p; for j ∈ {1, 2}

}
, (33)



11

where pXn
1 ,U

n
1 ,Xn

2 ,U
n
2 ,Y n := q⊗n

X1
q⊗n
X2
pUn

1 |Xn
1
pUn

2 |Xn
2
pY n|Un

1 ,Un
2

is such that∣∣∣∣∣∣pnX1,X2,Y − q⊗n
X1,X2,Y

∣∣∣∣∣∣
tvd

≤ ε (as 2(ε1 + ε2) ≤ ε). (34)

Suppose (R1, R2) ∈ R(n)
outer(ε1, ε2, ε). Then:

nRj ≥ Iεjmax(X
n
j ;U

n
j )pn

(a)
= Imax(X

n
j ;U

n
j )p′n

(b)

≥ I(Xn
j ;U

n
j )p′n

(c)

≥ I(Xn
j ;U

n
j )pn − 2εj log |Xj |n − 2h2

(
εj

1 + εj

)
(d)

≥ nI(Xj ;Uj)p − 2ε log |Xj |n − 2h2

(
εj

1 + εj

)

⇒ Rj ≥ lim
ε→0

lim
n→∞

nI(Xj ;Uj)p − 2ε log |Xj |n − 2h2

(
εj

1+εj

)
n


⇒ Rj ≥ I(Xj ;Uj)p,

where (a) holds by taking p′Xn
j ,U

n
j

∈ Bεj (pXn
j ,U

n
j
) to be the optimizer for Iεmax; (b) holds by the fact the

Imax(X;Y )p ≥ I(X;Y )p for any joint distribution pX,Y ; (c) follows due to continuity of mutual information
from Fact 6; (d) follows by Proposition 1 shown in Appendix B-D for some pXj ,Uj

= qXj
pUj |Xj

and finite |Uj |
from Lemma 1.3. Note that (34) and monotonicity of trace distance implies that ||pX1,X2,Y − qX1,X2,Y ||tvd ≤ δ.
Hence, we have shown that in the asymptotic iid limit:

lim
ε→0

lim
n→∞

R(n)
outer(ε1, ε2, ε) ⊆ Riid(ε). (35)

We have thus recovered the asymptotically optimal region of [5, Theorem 1, Theorem 3] up to δ. Since, in our
setting we have bounded cardinalities of the auxiliary random variables, we can directly apply [14, Lemma 6]
in our case (see Fact 7 for a detailed analysis). We thus finally recover the asymptotically optimal region of [5,
Theorem 1, Theorem 3] in our setting of independent and fixed inputs and no side information at the decoder, to
get

Router := lim
ε→0

lim
n→∞

R(n)
outer(ε1, ε2, ε) ⊆ lim

ε→0
Riid(ε) = Riid.

Thus we have shown that

Router ⊆ Riid ⊆ lim
n→∞

R(n)
inner(ε1, ε2) ⊆ Router

⇒ Rinner := lim
ε1,ε2→0

lim
n→∞

R(n)
inner(ε1, ε2) = Riid = Router .

V. UNIVERSAL MAC SIMULATION

Here, we consider the task of universal channel simulation, where the protocol should simulate the channel
qY |X1,X2

irrespective of any particular choice of input distribution qX1
× qX2

. Note the the inputs of the two
senders are still independent, but arbitrary. In the next proposition we show that Lemma 1.1 and Lemma 1.2 of our
MAC simulation protocol can be extended to achieve universal simulation with appropriate modifications. These
modifications refer to the simulation error be replaced by the maximum over the input samples x1, x2 (sampled
according to any input distribution) in contrast with the average over a fixed input distribution. Before stating our
result, we define universal protocol for MAC simulation formally.
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Definition 8 (Universal MAC simulation): An (R1, R2, ε) simulation protocol for a 2-independent user MAC
qY |X1X2

with inputs qX1
× qX2

and access to unlimited shared randomness between Sender1S1↔ Receiver and

Sender2S2↔ Receiver, consists of:

• A pair of encoders of form E1 × E2, such that: Ej : Xj × Sj → [1 : 2Rj ], for j ∈ {1, 2};
• Two independent noiseless rate-limited links of rate Rj , j ∈ {1, 2} and;
• A decoder D : [1 : 2R1 ]× S1 × [1 : 2R2 ]× S2 → Y;
• The overall joint distribution induced by the encoder-decoder pair final output is given by

pX1,X2,S1,S2,M1,M2,Y =

[
D ◦

(
2
×
j=1

Ej
)]{

2
×
j=1

(
qXj

× pSj

)}
s.t.

max
x1,x2

∣∣∣∣pY |X1=x1,X2=x2
− qY |X1=x1,X2=x2

∣∣∣∣
tvd

≤ ε and R1 = log |M1|, R2 = log |M2| . (36)

The rate region RU(ε) for universal simulation of a MAC is defined as the closure of the set of all rate pairs
(R1, R2) as given above satisfying (36).

We say that the simulation protocol of Definition 8 is universal in the sense that it can simulate the given MAC
qY |X1,X2

for any input distribution qX1
× qX2

, without being dependent on qX1
and qX2

. This is ensured by the
max-error criterion in (36).

In this section, we henceforth consider pU1,U2,Y |X1,X2
to be a conditional p.m.f. of the form:

pU1,U2,Y |X1,X2
= pU1|X1

pU2|X2
pY |U1,U2

. (37)

A. One-shot setting

We first introduce the regions Rinner
U and Router

U which we will prove are the respective inner and outer bounds
for the task of one-shot universal MAC simulation given by Definition 8.

Definition 9: Let ε ∈ (0, 1), and ε1, ε2, δ ∈ (0, 1) be such that δ < min{ε1, ε2} and ε1 + ε2 ≤ ε. Let
Rinner

U (ε1, ε2, δ) be the set of non-negative real numbers (R1, R2) defined as:

Rinner
U (ε1, ε2, δ) = cl


⋃

(pU1|X1
,pU2|X2)∈Ainner

{
(R1, R2) : Rj ≥ Iεj−δ

max (pUj |Xj
) + log log

1

δ
for j ∈ {1, 2}

} ,

(38)

where Ainner is the set of all feasible distributions for evaluating Rinner
U and is given by

Ainner :=
{(
pU1|X1

, pU2|X2

)
: ∃ pY |U1,U2

satisfying pY |X1,X2
= qY |X1,X2

}
. (39)

Similarly, let Router
U (ε1, ε2) be the set of non-negative real numbers (R1, R2) defined as:

Router
U (ε1, ε2) = cl


⋃

(pU1|X1 ,pU2|X2)∈Aouter
ε

{
(R1, R2) : Rj ≥ Iεjmax(pUj |Xj

) for j ∈ {1, 2}
} , (40)

where Aouter
ε is the set of all feasible distributions for evaluating Router

U and is given by

Aouter
ε :=

{(
pU1|X1

, pU2|X2

)
: ∃ pY |U1,U2

satisfying (41)

max
x1,x2

∥∥pY |X1=x1,X2=x2
− qY |X1=x1,X2=x2

∥∥
tvd

≤ 2ε, |U1|, |U2| ≤ |X1||X2||Y|
}
. (42)
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Theorem 2: Let qY |X1,X2
be a given 2-sender, 1-receiver MAC. For any ε ∈ (0, 1), and ε1, ε2, δ ∈ (0, 1) be such

that δ < min{ε1, ε2}) and ε1 + ε2 ≤ ε, one-shot rate region for universal simulation of MAC satisfies:

Rinner
U (ε1, ε2, δ) ⊆ RU(ε) ⊆ Router

U (ε1, ε2) , (43)

where Rinner
U (ε1, ε2, δ) and Router

U (ε1, ε2) are as defined in Definition 9.

The proof comprises of two parts:

• Direct part or the achievability as shown in Lemma 2.1; and
• Converse as proven in Lemma 2.2.

B. Achievability

Lemma 2.1: For any given ε > 0, let ε1, ε2 > 0 be such that ε1 + ε2 ≤ ε and δ ∈ (0,min{ε1, ε2}). Then,
Rinner

U (ε1, ε2, δ) ⊆ RU(ε).

The proof of this lemma (see Appendix D-A) is very similar to that of the fixed input simulation case of
Lemma 1.1, with the difference being that the simulation error criterion is changed from average to maximum.

C. Converse

Lemma 2.2: For any given ε ∈ (0, 1), let ε1, ε2 > 0 be such that ε = ε1 + ε2. Then, RU(ε) ⊆ Router
U (ε1, ε2).

The proof has minor technical changes compared to that of Lemma 1.2 due to the average simulation error being
replaced by the maximum simulation error criterion and is given in Appendix D-B.

We now extend the one-shot result to the asymptotic iid setting.

D. Asymptotic expansion

In this section, we consider a universal MAC simulation protocol that simulates n-iid copies of the channel,
that is, q⊗n

Y |X1,X2
with general n-letter inputs denoted by qXn

1
× qXn

2
. We note that this is in contrast to the generic

usage of the term asymptotic iid, as used in previous sections, which refers to iid inputs q⊗n
X1

× q⊗n
X2

. This leads
to non-trivialities in extending the one-shot result to asymptotic iid as neither the inputs nor the auxiliary random
variables that characterize the rate region are iid. Nevertheless we prove the following single-letter characterization
even for this case.
Henceforth, in this section, we consider pU1,U2,Y |X1,X2

to be a conditional p.m.f. of the form given in (37).

Corollary 2.1: The rate region for universal asymptotic iid simulation of MAC qY |X1,X2
is given by

Riid
U = cl


⋃

pU1,U2,Y |X1,X2
:

(X1,X2)→(U1,U2)→Y
& pY |X1,X2=qY |X1,X2 ,
|U1|,|U2|≤|X1||X2||Y|

{
(R1, R2) : Rj ≥ max

qXj

I(Xj ;Uj)qXj
pUj |Xj

, j ∈ {1, 2}
}

. (44)

We prove this proposition in Appendix D-C.

Remark 2.1: Note that the point-to-point channel is a special case of the MAC, where one of the inputs, say
X2, is redundant. Then, setting U1 = Y , U2 = X2 = 1 with probability one, and ε2 = 0 in the definitions of
Rinner(ε1, ε2, δ) and Router(ε1, ε2), we recover the one-shot point-to-point channel simulation result of [3] stated in
Fact 2 (see Appendix A). Furthermore, this also recovers the asymptotically optimal point-point channel simulation
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rate I(X;Y )qX,Y
as shown in [3], [15]. Moreover, for the point-to-point case our technique can be straight away

extended to obtain the universal channel simulation by identifying optimal U = Y .

Remark 2.2: We remark that the universal simulation protocol can also be used for the fixed input protocol of
Section III. The main difference is that the communication rates of the universal protocol are higher than that is
necessary for the fixed input case because

Iεmax(pU |X) ≥ Iεmax(X;U)qXpU|X

due to the fact that the minimization in the definition of the channel smoothed max-mutual information (left hand
side term above) is over a small set since the simulation error criterion is stronger. Hence, we gave a separate
analysis for the fixed input case.

VI. QUANTUM-CLASSICAL MAC SIMULATION

In this section, we take a step towards generalizing our simulation protocol in the quantum regime. To this end,
we consider a MAC with two independent quantum inputs and one classical output. Generally, a channel that takes
a quantum state as an input and outputs a probability distribution (or classical state as the output random variable)
is modelled as a measurement device (or a measurement channel). Hence we refer to the 2-quantum input and
1-classical output as a QC MAC and think of it as a measurement channel.

Classical scrambling QC MAC (CS-QC MAC): Channel first does a product measurement on two inputs with
classical outcomes X1, X2 and then scrambles them according to the conditional probability distribution qY |X1,X2

.
We refer to such channels as "classical scrambling" (CS) channels, denoted as

NA1A2→Y
CS := qY |X1,X2

◦
(
ΛA1→X1 ⊗ ΓA2→X2

)
, (45)

where ΛA1→X1 and ΓA2→X2 are measurements with POVM elements {Λx1
}x1

and {Γx2
}x2

, respectively. This is a
special case of the model of a QC-channel proposed in [16], termed as distributed measurement channel having a
separable decomposition with stochastic integration.

We characterize the cost of simulating the CS-QC MAC with feedback defined as follows:

CS-QC MAC with feedback: Channel first does a product measurement on two inputs, creates two copies of the
classical outputs and then scrambles one of the copies according to qY |X1,X2

, while keeping the other untouched. We
refer to such channels as "classical scrambling channels with feedback", shown in the right hand side of Figure VI
and is denoted as:

NA1A2→Y X1X2

CS := qY |X1,X2
◦
(
ΛA1→X1X′

1 ⊗ ΓA2→X2X′
2

)
,

where the measurement operators are defined as:

IE1 ⊗ ΛA1→X1X′
1(|φ1⟩⟨φ1|E1A1) :=

∑
x1

pX1
(x1) |x1⟩⟨x1|X1 ⊗ |x1⟩⟨x1|X

′
1 ⊗ φE1

x1
: Tr(φE1

x1
) = 1;

IE2 ⊗ ΓA2→X2X′
2(|φ1⟩⟨φ1|E2A2) :=

∑
x2

pX2
(x2) |x2⟩⟨x2|X2 ⊗ |x2⟩⟨x2|X

′
2 ⊗ φE2

x2
: Tr(φE2

x2
) = 1.

Note that (X ′
1, X

′
2) are just the classical copies of (X1, X2). The conditional distribution qY |X1,X2

is a probability
measure on Y conditioned on random variables taking values in X1 × X2. Henceforth, we consistently use the
notation qY |X1,X2

(instead of qY |X′
1,X

′
2
) to represent the classical scrambling map to mean that random variables

(X ′
1, X

′
2) are stochastically mapped to the output random variable Y . Thus, the actual channel outcome is given as

NAB→Y X1X2

CS (ρA1

1 ⊗ ρA2

2 ) = Σ
x1,x2,y

qY |X1,X2
(y|x1, x2) |y⟩⟨y|Y ⊗ TrA1

[ΛA1
x1
ρ1] |x1⟩⟨x1|X1 ⊗ TrA2

[ΓA2
x2
ρ2] |x2⟩⟨x2|X2 .

(46)

Here, we focus on the task of simulating CS-QC MAC with feedback represented by (46).
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Fig. 2. CS-QC MAC with feedback: Encoders Ej : (X ′
j , Sj)

convex−−−−→
split

Mj ∈ [1 : 2Rj ], Decoder D : (M1,M2, S1, S2) 7→ Y ; ≈ε denotes

closeness in tvd.

A. Feedback simulation for fixed product input

Definition 10 (CS-QC MAC with feedback simulation): An (R1, R2, ε) simulation code for a 2-independent user
CS-QC MAC with feedback given in (46) and access to unlimited shared randomness between Sender1 S1↔ Receiver
and Sender2 S2↔ Receiver, consists of:

• Inputs to the two encoders are φ1
E1X1X′

1 ⊗ φ2
E2X2X′

2 , where

φj
EjXjX′

j :=
∑
xj

pXj(xj) |xj⟩⟨xj |
Xj ⊗ |xj⟩⟨xj |X

′
j ⊗ φxj

Ej ; pXj
(xj) := Tr[Λxj

ρj ],

and φE1
x1

⊗ φE2
x2

is the normalized post-measurement state of the measurement Λ ⊗ Γ. Note that X ′ is just a
classical copy of X , to perform the simulation with feedback;

• A pair of encoders E1 ⊗ E2 with inputs as the measurement outcomes X1, X2 and shared randomness S1 S2,
denoted by: Ej : Xj ⊗ Sj → [1 : 2Rj ], for j ∈ {1, 2};

• Two separate noiseless rate-limited classical links of rate Rj , j ∈ {1, 2} and;
• A decoder D : [1 : 2R1 ]× S1 × [1 : 2R2 ]× S2 → Y;
• The simulation algorithm produces the overall state as

τY X1X2E1E2 := D ◦
(

2
⊗
j=1

Ej
)(

|φ1⟩⟨φ1| ⊗ |φ2⟩⟨φ2| ⊗
(

2
⊗
j=1

Sj

))
,

such that ∣∣∣∣τY X1X2E1E2 − ηY X1X2E1E2
∣∣∣∣
1
≤ ε, (47)

where ηY X1X2E1E2 := NA1A2→Y X1X2(|φ1⟩⟨φ1|A1E1 ⊗ |φ2⟩⟨φ2|A2E2), is the output state of CS-QC MAC N
to be simulated.

The rate region R(ε) for simulating MAC is defined as the closure of the set of all rate pairs (R1, R2) as given
above.

The classical MAC simulation described in Section III is the non-feedback simulation. However, in order to extend
the classical proof technique of the converse to CS-QC MAC, we require the encoders to have access to the classical
outcomes of the measurement channels ΛA1→X1 ⊗ ΓA2→X2 . Observe that simulation criteria in (47) is an average
error criterion similar to the classical MAC simulation criteria with fixed inputs given in (4).
In what follows, let τE1E2X1X2U1U2Y and ηE1E2X1X2U1U2Y be the following classical-quantum (CQ) states:

τE1E2U1U2X1X2Y := Σ
u⃗,x⃗,y

pY |U1U2
(y|u1, u2)pU1|X1

(u1|x1)pX1
(x1)pU2|X2

(u2|x2)pX2
(x2) |y⟩⟨y|Y ⊗ |x1⟩⟨x1|X1

⊗ |u1⟩⟨u1|U1 ⊗ |x2⟩⟨x2|X2 |u2⟩⟨u2|U2 ⊗
TrA1

[ {
IE1 ⊗ ΛA

x1

}
(φE1A1

1 )
]

pX1
(x1)

⊗ (48)
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TrA2

[ {
IE2 ⊗ ΓA2

x2

}
(φE2A2

2 )
]

pX2
(x2)

; and (49)

ηY E1E2X1X2 := Σ
x⃗,y
qY |X1,X2

(y|x1, x2)pX1
(x1)⊗ pX2

(x2) |y⟩⟨y|Y ⊗ |x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2 ⊗

TrA1

[ {
IE1 ⊗ ΛA

x1

}
(φE1A1

1 )
]

pX1
(x1)

⊗
TrA2

[ {
IE2 ⊗ ΓA2

x2

}
(φE2A2

2 )
]

pX2
(x2)

. (50)

We now define the regions analogous to the classical case given by Definition 6 and 9, which will be proven as
the inner and outer bound regions for the task of QC-MAC simulation with feedback analogous to Definition 6.

Definition 11 (Inner and Outer bounds): Let ε ∈ (0, 1), and ε1, ε2, δ ∈ (0, 1) be such that δ < min{ε1, ε2} and
ε1 + ε2 ≤ ε. Let RQC−fb

inner (ε1, ε2, δ) be the set of non-negative real numbers (R1, R2) defined as:

RQC−fb
inner (ε1, ε2, δ) = cl

 ⋃
(τE1X1U1 ,τE2X2U2 )∈Ainner

{
(R1, R2) : Rj ≥ Iεj−δ

max (Ej ;Uj)τ + 2 log
1

δ
for j ∈ {1, 2}

} ,

(51)

where Ainner is the set of all feasible states for evaluating RQC−fb
inner and is given by

Ainner :=
{(
τE1X1U1 , τE2X2U2

)
: ∀τ s.t. τE1E2X1X2Y = ηE1E2X1X2Y

}
. (52)

Similarly, let RQC−fb
outer (ε1, ε2) be the set of non-negative real (R1, R2) numbers defined as:

RQC−fb
outer (ε1, ε2) = cl

 ⋃
(τE1X1U1 ,τE2X2U2 )∈Aouter

ε

{(R1, R2) : Rj ≥ Iεjmax(Ej ;Uj)τ for j ∈ {1, 2}}

 , (53)

where Aouter
ε is the set of all feasible states for evaluating RQC−fb

outer and is given by

Aouter
ε :=

{(
τE1X1U1 , τE2X2U2

)
: ∀τ s.t.

∥∥τE1E2X1X2Y − ηE1E2X1X2Y
∥∥
tvd

≤ 2ε, |U1|, |U2| ≤ |X1||X2||Y|
}
. (54)

The following characterization is our main result in this section.

Theorem 3: Let NAB→Y X1X2

CS be a given 2-sender, 1-receiver MAC with input ρA1 ⊗ ρA2 and their respective
purifications denoted by |φ⟩E1A1⊗|φ⟩E2A2 . For ε ∈ (0, 1) and ε1, ε2 > 0 with ε1+ε2 ≤ ε, and δ ∈ (0,min{ε1, ε2}),
we have

RQC−fb
inner (ε1, ε2, δ) ⊆ R(ε) ⊆ RQC−fb

outer (ε1, ε2), (55)

where RQC−fb
inner (ε1, ε2, δ) and RQC−fb

outer (ε1, ε2) are given in Definition 11.

The proof comprises of two parts:

• Direct part or the achievability, which we prove in Lemma 3.1; and
• Converse shown in Lemma 3.2.

Note that RQC−fb
inner (ε1, ε2, δ) and RQC−fb

outer (ε1, ε2) characterize the one-shot rate region R(ε) up to a fudge factor
that depends on δ, ε1 and ε2.

B. Achievability

Lemma 3.1: For any given ε > 0, let ε1, ε2 > 0 be such that ε1 + ε2 ≤ ε and δ ∈ (0,min{ε1, ε2}). Then
RQC−fb

inner (ε1, ε2, δ) ⊆ R(ε).

Proof: Fix (ε1, ε2, δ) satisfying the conditions in the lemma and let |φ1⟩E1A1 ⊗ |φ2⟩E2A2 be the purifications
of the fixed quantum inputs ρA1

1 ⊗ ρA2

2 , with E1, E2 denoting the purifying reference (or the environment) systems.
We need to show that for any (R1, R2) ∈ RQC−fb

inner (ε1, ε2, δ) (defined in (51)), there exists an (R1, R2, ε) one-shot
MAC simulation protocol as mentioned in Definition 10.
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We note that since the overall state used to evaluate Rinner(ε1, ε2, δ) is a CQ state τ given in (56) satisfying the
simulation criterion, we have:

ηE1E2X1X2Y = TrU1,U2
τE1E2X1X2U1U2Y

⇒ pX1
(x1)pX2

(x2)qY |X⃗(y|x⃗) =
∑
u⃗

pX1
(x1)pX2

(x2)pU1|X1
(u1|x1)pU2|X2

(u2|x2)pY |U⃗ (y|u⃗) . (56)

We henceforth consider the joint distribution pX1,X2,U1,U2,Y in (56) throughout the proof. We will show that (R1, R2)
is achievable by constructing a protocol that uses the convex split lemma from Fact 3, for each sender.

• Encoding: The input to the encoders E1 and E2 are the post-measurement states φ1
E1X1X′

1 and φ
E2X2X′

2

2 ,
respectively. The encoders then generate the classical auxiliary random variables Uj by post processing X ′

j

with the dephasing map IEj ⊗ CX′
j→Uj

j . This map is essentially a measurement channel that measures the
state on X ′

j in an orthonormal basis {|uj⟩}Uj and outputs the classical variable Uj distributed according to
the conditional distribution pUj |Xj

, formally defined as follows:

CX′
j→Uj

j :

(
Σ
xj

pX′
j
(xj) |xj⟩⟨xj |X

′
j

)
7→
(

Σ
uj ,xj

pX′
j
(xj)pUj |Xj

(uj |xj) |uj⟩⟨uj |Uj

)
Thus, for j ∈ {1, 2}, the overall states φE1X1U1

1 and φE2X2U2

2 are given by:

φ
EjXjUj

j :=
∑
uj ,xj

pXj
(xj)pUj |Xj

(uj |xj) |xj⟩⟨xj |Xj ⊗ |uj⟩⟨uj |Uj ⊗ φEj
xj
.

⇒ φ
EjUj

j =
∑
uj

pUj
(uj) |uj⟩⟨uj |Uj ⊗

∑
xj

pXj |Uj
(xj |uj)φEj

xj
=
∑
uj

pUj
(uj) |uj⟩⟨uj |Uj ⊗ φ

′Ej
uj
, (57)

where φ
′Ej
uj :=

∑
xj
pXj |Uj

(xj |uj)φEj
xj . Note that these auxiliary random variables Uj ∼ pUj |Xj

will satisfy
the condition of (56). The resultant state to be further encoded or compressed to achieve lower rates is the
purification of φ1

E1X1U1 ⊗ φ2
E2X2U2 , which is given by:

|φj⟩EjE′
jXjX′′

j UjŨj :=
∑
xj ,uj

√
pXj

(xj)pUj |Xj
(uj |xj) |φxj

⟩EjE′
j |xjxj⟩XjX′′

j |ujuj⟩UjŨj . (58)

Sender j holds the registers E′
j , Xj , X

′′
j , Uj and Ũj . Now we use the encoders Ej,meas. comp. : Sj × Ũj → [1 : 2Rj ]

of the measurement compression protocol with feedback (see Definition 12 and the proof in Appendix E-B).
These measurement compression encoders compress Ũj using one half of the available shared randomness
to a message Mj described by Rj bits. We denote the overall encoder Ej = Ej,meas. comp. ◦ CX′

j→Uj (see
(Appendix E-B for details of Ej,meas. comp.).

• Decoding: The decoding is composed of the following two steps:

1. The receiver first recovers Uj from the received message index and the available shared randomness.
This is accomplished by using the decoders Dj : [1 : 2Rj ]⊗Sj → Ūj of the measurement compression theorem
(Dmeas. comp.) from Definition 12 with exact details in Appendix E-B. Essentially these are the isometries that
are guaranteed by Uhlmann’s theorem (Fact 11) in the convex split lemma. The recovered pairs are denoted
by Ū1, Ū2 and in effect the correlations with E1, E2 are "preserved".
Let the overall state after the application of (Dj ◦ Ej) be denoted as:

|φ̃j⟩EjE′
jXjX′

jUjŪj :=
∑
xj ,uj

√
p̃Xj ,Ūj

(xj , uj) |φxj
⟩EjE′

j |xjxj⟩XjX′
j |ujuj⟩UjŪj (59)

⇒ φ̃
EjŪj

j =
∑
xj ,uj

p̃Xj ,Ūj
(xj , uj)φ

Ej
xj

⊗ |uj⟩⟨uj |Ūj and (60)

εj
(a)

≥ ||φ̃j − φj ||tvd ≥
∣∣∣∣∣∣p̃Xj ,Ūj

− pXj ,Uj

∣∣∣∣∣∣
tvd

(61)
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where (a) follows from Fact 3 for

Rj ≥ Iεj−δ
max (Ej ;Uj)τ + 2 log

1

δ
; j ∈ {1, 2}. (62)

2. The decoder D use these recovered classical states Ūj and finally outputs Y ∼ pY |Ū1,Ū2
.

• Analysis of the code: We now show that the code defined above using E1 ⊗E2 as the encoder and pY |U1,U2
◦

(D1 ⊗D2) as the decoder satisfies the simulation constraint and hence is a valid simulation code for CS-QC
MAC with feedback. And we finally evaluate the rate of this code. For this, we first recall that the actual
channel output ηY E1E2X1X2 from (46) can be written as:

ηY E1E2X1X2 :=
∑
x⃗,y

qY |X⃗(y|x⃗)pX1
(x1)pX2

(x2) |y⟩⟨y|Y ⊗ φE1
x1

⊗ φE2
x2

⊗ |x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2 (63)

with an extension:

τY E1E2X1X2U1U2 :=
∑
x⃗,u⃗,y

pY |U⃗ (y|u⃗)pX1
(x1)pU1|X1

(u1|x1)pX2
(x2)pU2|X2

(u2|x2) |y⟩⟨y|Y ⊗ φE1
x1

⊗ φE2
x2
⊗

|x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2 ⊗ |u1⟩⟨u1|U1 ⊗ |u2⟩⟨u2|U2 such that

τE1E2X1X2Y = ηE1E2X1X2Y ⇒ pX1,X2,Y = pX1
pX2

qY |X1,X2
. (64)

where (64) holds due to the block diagonal structure of the CQ states η and τ . Validity of the simulation
constraint: Let the overall final state of the protocol be:

τ̃Y E1E2X1X2U1U2 :=
∑
x⃗,u⃗,y

pY |U⃗ (y|u⃗)p̃X1,U1
(x1, u1)p̃X2,U2

(x2, u2) |y⟩⟨y|Y ⊗ φE1
x1

⊗ φE2
x2
⊗

|x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2 ⊗ |u1⟩⟨u1|U1 ⊗ |u2⟩⟨u2|U2 . (65)

We can now apply triangle inequality to obtain the following bound:∣∣∣∣τ̃ E1E2X1X2Y − ηE1E2X1X2Y
∣∣∣∣
tvd

≤
∣∣∣∣τ̃E1E2X1X2Y − τE1E2X1X2Y

∣∣∣∣
tvd

+
∣∣∣∣τE1E2X1X2Y − ηE1E2X1X2Y

∣∣∣∣
tvd

(i)

≤
∣∣∣∣τ̃E1E2X1X2Y − τE1E2X1X2Y

∣∣∣∣
tvd

(ii)

≤ ε1 + ε2 , (66)

where (i) follows from (64) and (ii) holds due to the following analysis:

||τ̃ − τ ||tvd =

∥∥∥∥ Σ
y,u⃗,x⃗

pY |U⃗ (y|u⃗)
[
p̃X1,U1

(x1, u1)p̃X2,U2
(x2, u2)− pX1,U1

(x1, u1)pX2,U2
(x2, u2)

]
|y⟩⟨y| ⊗

|u1⟩⟨u1| ⊗ |u2⟩⟨u2| ⊗ |x1⟩⟨x1| ⊗ |x2⟩⟨x2| ⊗ φE1
x1

⊗ φX2
x2

∥∥∥∥
tvd

=
1

2
Σ

y,u⃗,x⃗
pY |U⃗ (y|u⃗)

∣∣∣∣[p̃X1,U1
(x1, u1)p̃X2,U2

(x2, u2)− pX1,U1
(x1, u1)pX2,U2

(x2, u2)

]∣∣∣∣
=

1

2
Σ
u⃗,x⃗
pX⃗(x⃗)

[
p̃X1,U1

(x1, u1)p̃X2,U2
(x2, u2)− pX1,U1

(x1, u1)pX2,U2
(x2, u2)

]
≤ 1

2
Σ
u⃗,x⃗

[|p̃X1,U1
(x1, u1)p̃X2,U2

(x2, u2)− pX1,U1
(x1, u1)p̃X2,U2

(x2, u2)|+

|pX1,U1
(x1, u1)p̃X2,U2

(x2, u2)− pX1,U1
(x1, u1)pX2,U2

(x2, u2)|]
(a)

≤ 1

2
Σ
u⃗,x⃗

[|p̃X1,U1
(x1, u1)− pX1,U1

(x1, u1)||p̃X2,U2
(x2, u2)|+

|pX1,U1
(x1, u1)||p̃X2,U2

(x2, u2)− pX2,U2
(x2, u2)|]

(b)

≤ ε1 + ε2 ,
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where (a) holds by triangle inequality and (b) holds by using (61).
We have thus shown that the protocol with E1 ⊗ E2 = (E1,meas. comp. ◦ CX1→U1) ⊗ (E2,meas. comp. ◦ CX2→U2) as
encoders and DX1X2→Y := pY |U1,U2

◦ (D1,meas. comp. ⊗ D2,meas. comp.) as the decoder, is an (R1, R2, ε1 + ε2)-
simulation code for CS-QC MAC with feedback provided (62) holds.

C. Converse

Lemma 3.2: Let ε1, ε2 ∈ (0, 0.5) and ε = ε1 + ε2. Then, R(ε) ⊆ RQC−fb
outer (ε1, ε2).

Proof: Let (ε1, ε2) and ε satisfy the conditions of the lemma. We need to show that any (R1, R2, ε) CS-QC
MAC simulation protocol according to Definition 10 has (R1, R2) ∈ RQC−fb

outer (ε1, ε2) (defined in (53)). Let the
output state of the channel with feedback be ηE1E2X1X2Y and let (R1, R2, ε1 + ε2) simulation code produce the
state τ ′ E1E2X1X2Y having the form of (49) and satisfying the following simulation constraint:∣∣∣∣τ ′ E1E2X1X2Y − ηE1E2X1X2Y

∣∣∣∣
tvd

≤ ε = ε1 + ε2.

Let the respective purifications of the post-measurement state after measurement (Λ⊗Γ) be given by |φ⟩E1E′
1X1X′

1⊗
|ψ⟩E2E′

2X2X′
2 and the shared randomness be denoted by SA′

1Å
′
1

1 ⊗ S
A′

2Å
′
2

2 . The Stinespring isometry of the encoders
V

X′
1A

′
1→M1M ′

1X̄1Ā1

E1
⊗ V

X′
2A

′
2→M2M ′

2X̄2Ā2

E2
creates the pure states (where Āj

∼= A′
j , X̄j

∼= Xj):

|ν ′1⟩
E1E′

1M1M ′
1Ā1

◦
A′

1A
′′
1

◦
A′′

1X1X̄1 := Σ
x1,m1,s1

√
pM1|X1,S1

(m1|x1, s1)pX1
(x1)pS1

(s1) |m1m1⟩M1M ′
1 |x1x1⟩X1X̄1 ⊗

|s1s1⟩Ā1A′′
1 |s1s1⟩

◦
A′

1

◦
A′′

1 |φx1
⟩E1E′

1 (67)

|ν ′2⟩
E2E′

2M2M ′
2Ā2

◦
A′

2A
′′
2

◦
A′′

2X2X̄2 := Σ
x2,m2,s2

√
pM2|X2,S2

(m2|x2, s2)pX2
(x2)pS2

(s2) |m2m2⟩M2M ′
2 |x2x2⟩X2X̄2 ⊗

|s2s2⟩Ā2A′′
2 |s2s2⟩

◦
A′

2

◦
A′′

2 |φx2
⟩E2E′

2 . (68)

In summary, the encoders produce the following output states:

ν ′1
E1M1

◦
A′

1 = Σ
x1,m1,s1

pM1|X1,S1
(m1|x1, s1)pX1

(x1)pS1
(s1) |m1⟩⟨m1|M1 ⊗ |s1⟩⟨s1|

◦
A′

1 ⊗ φE1
x1
, (69)

ν ′2
E2M1

◦
A′

2 = Σ
x2,m2,s2

pM2|X2,S2
(m2|x2, s2)pX2

(x2)pS2
(s2) |m2⟩⟨m2|M2 ⊗ |s2⟩⟨s2|

◦
A′

2 ⊗ φE2
x2
. (70)

Now, similar to the converse part of Theorem 1 in Lemma 1.2 we will identify the auxiliary random variables Uj

from the classical message Mj and parts of shared randomness. In order to do so, we will curtail the states ν ′j in
their eigen basis, so that the resultant state has a similar CQ form and is appropriately close to ν ′. We now give
the formal description of this intuition.
For every x⃗, we now define the ‘bad’ set Cx⃗ as the complement of the following set:

C̄x⃗ :=

{
(m⃗, s⃗) : p′Mj |Sj ,Xj

(mj |sj , xj) ≥
εj

|Mj |
, j = 1, 2

}
. (71)

Note that this is very similar to the set defined in (14) for the classical case. Henceforth, the analysis is almost
fully classical from this step, except that the rates will be evaluated with respect to the CQ state τ to be identified
in (75).
Consider the following joint distribution on X⃗, M⃗, S⃗, Y :

p′
X⃗,S⃗,M⃗,Y

(x⃗, s⃗, m⃗, y) :=


2⊗

j=1

pXj
(xj)pMj,Sj |Xj

(mj ,sj |xj)

Pp(C̄xj
)

PY |M⃗,S⃗(y|m⃗s⃗) (m⃗, s⃗) ∈ C̄x⃗

0 otherwise .

(72)
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Now using the definitions from equations (71), (72) we identify the classical auxiliary random variable for every x1
as U1 = (M1, S1)11C̄x1

∼ pU1|X1 (u1|x1)11C̄x1

Pp(C̄x1 )
and U2 = (M2, S2)11C̄x2

∼ pU2|X2 (u2|x2)11C̄x2

Pp(C̄x2 )
. We thus define the encoded

states ν1, ν2 with U1, U2 as:

ν
E1U1A′′

1X1

1 := Σ
x1∈X1,

(m1,s1)∈C̄x1

pX1
(x1)pS1

(s1)p
′
M1|S1,X1

(m1|s1, x1) |x1⟩⟨x1|X1 ⊗ |m1, s1⟩⟨m1, s1|U1 ⊗ |s1⟩⟨s1|A
′′
1 ⊗ φE1

x1

= Σ
x1,u1

pX1
(x1)p

′
U1|X1

(u1|x1) |x1⟩⟨x1|X1 ⊗ |u1⟩⟨u1|U1 ⊗ |s1⟩⟨s1|A
′′
1 ⊗ φE1

x1

ν
E2U2A′′

2X2

2 := Σ
x2∈X2,

(m2,s2)∈C̄x2

pX2
(x2)pS2

(s2)pM2|S2,X2
(m2|s2, x2) |x2⟩⟨x2|X2 ⊗ |m2, s2⟩⟨m2, s2|U2 ⊗ |s2⟩⟨s2|B

′′
2 ⊗ ψE2

x2

= Σ
x2,u2

pX2
(x2)p

′
U2|X2

(u2|x2) |x2⟩⟨x2|X2 ⊗ |u2⟩⟨u2|U2 ⊗ |s2⟩⟨s2|A
′′
2 ⊗ φE2

x2

The probability of the set Cx⃗ is upper bounded by ε1 + ε2 similar to (15). Hence, P(C̄x⃗) ≥ 1− (ε1 + ε2). We now
show that

∣∣∣∣∣∣νj − ν ′j

∣∣∣∣∣∣
tvd

≤ εj for j ∈ {1, 2}. For this, first note that for every x⃗ the set C̄x⃗ can be seen as Cartesian

product of the sets C̄xj
:=
{
(mj , sj) : pMj ,Sj

(mj , sj) >
εj

|Mj |

}
. Also, Pp(C̄xj

) ≥ 1− εj . Thus:

∣∣∣∣ν ′j − νj
∣∣∣∣
1
=
∑
xj

∑
mj ,sj∈C̄xj

∣∣∣∣pXj
(xj)

[
pMj ,Sj |Xj

(mj , sj |xj)
Pp(C̄xj

)
− pMj ,Sj |Xj

(mj , sj |xj)
]∣∣∣∣+∑

xj

∑
mj ,sj∈Cxj

pXj
(xj)

[
pMj ,Sj |Xj

(mj , sj |xj)
]

=
∑
xj

pXj
(xj)

[
Pp(C̄xj

)

(
1

Pp(C̄xj
)
− 1

)
+ Pp(Cxj

)

]
= 2

∑
xj

pXj
(xj)Pp(Cxj

) ≤ 2εj ,

⇒
∣∣∣∣ν ′j − νj

∣∣∣∣
tvd

≤ εj . (73)

Similar to (67), we define the purifications of the states ν ′j as follows:

|ν ′j⟩
EjE′

jMjM ′
jĀj

◦
A′

jA
′′
j

◦
A′′

j XjX̄j :=
∑
xj

∑
(mj ,sj)∈C̄xj

√
p′Mj |Xj ,Sj

(mj |xj , sj)pXj
(xj)pSj

(sj) |mjmj⟩MjM ′
j |xjxj⟩XjX̄j

⊗ |sjsj⟩ĀjA′′
j |sjsj⟩

◦
A′

j

◦
A′′

j |φxj
⟩EjE′

j ,

⇒ |ν ′j⟩
EjE′

jUjU ′
j

◦
A′

j

◦
A′′

j XjX̄j :=
∑
xj

∑
(mj ,sj)∈C̄xj

√
p′Uj |Xj

(uj |xj)pXj
(xj) |ujuj⟩UjU ′

j |xjxj⟩XjX̄j |sjsj⟩
◦
A′

j

◦
A′′

j |φxj
⟩EjE′

j

(74)

The overall state after the action of the decoder acting on |ν1⟩ ⊗ |ν2⟩ is denoted (after tracing out all but
E1E2U1U2X1X2Y subsystems) by τE1E2U1U2X1X2Y :

τE1E2U1U2X1X2Y := DU1U2→Y (ν1 ⊗ ν2)

=
∑
x⃗,y

∑
m⃗,s⃗∈C̄

pX⃗(x⃗)
pM⃗,S⃗|X⃗(m⃗, s⃗|x⃗)

Pp(C̄)
pY |M⃗,S⃗(y|m⃗, s⃗) |y⟩⟨y|

Y ⊗ |x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2 ⊗

⊗ |m1, s1⟩⟨m1, s1|U1 ⊗ |m2, s2⟩⟨m2, s2|U2 ⊗ φE1
x1

⊗ φE2
x2

We thus have that:∣∣∣∣∣∣τ ′E1E2X1X2Y − τE1E2X1X2Y
∣∣∣∣∣∣
tvd

(75)

=

∣∣∣∣∣∣∣∣D(ν ′E1X1M1M ′
1

◦
A′

1

◦
A′′

1

1 ⊗ ν
′E2X2M2M ′

2

◦
A′

2

◦
A′′

2

2 − ν
E1X1M1M ′

1

◦
A′

1

◦
A′′

1

1 ⊗ ν
E2X2M2M ′

2

◦
A′

2

◦
A′′

2

2

)∣∣∣∣∣∣∣∣
tvd
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≤
∣∣∣∣ν ′1 ⊗ ν ′2 − ν1 ⊗ ν2

∣∣∣∣
tvd

(a)

≤
2∑

j=1

∣∣∣∣ν ′j − νj
∣∣∣∣
tvd

(b)

≤ ε1 + ε2, (76)

where (a) holds because of triangle inequality and (b) follows from (73). Finally, using the simulation constraint∣∣∣∣τ ′ E1E2X1X2Y − ηE1E2X1X2Y
∣∣∣∣
tvd

≤ ε1 + ε2 and the triangle inequality again, we get that∣∣∣∣τE1E2X1X2Y − ηE1E2X1X2Y
∣∣∣∣
tvd

≤ 2(ε1 + ε2).

We now evaluate the rate of the code. First we notice that τEjUj = τEjA′′
j Mj = ν

EjA′′
j Mj

j and τ ′ EjA′′
j Mj = ν

′EjA′′
j Mj

j

for j ∈ {1, 2}. Hence, we have

τEjUj = ν
EjA′′

j Mj

j

(a)

≤ |Mj |
(
ν
Ej

j ⊗ ν̃
A′′

j Mj

j

)
, (77)

where (a) holds due to

ν
EjMjA′′

j

j =
∑
xj

pXj
(xj)φ

Ej
xj

⊗
∑

mj ,sj∈C̄xj

pSj
(sj)pMj |Xj ,Sj

(mj |xj , sj) |mj⟩⟨mj |Mj ⊗ |sj⟩⟨sj |A
′′
j

≤
∑
xj

pXj
(xj)φ

Ej
xj

⊗
∑
mj ,sj

pSj
(sj) |mj⟩⟨mj |Mj ⊗ |sj⟩⟨sj |A

′′
j ,

In the above, we used

p′Mj |Sj ,Xj
(mj |sj , xj) ≤ 1, ∀(xj , sj ,mj),

and ν̃
A′′

j Mj

j :=
∑
mj ,sj

pSj
(sj)

|Mj |
|mj⟩⟨mj |Mj ⊗ |sj⟩⟨sj |A

′′
j .

Hence, from (77) and Definition 4 of the quantum smoothed max-mutual information, we have

Rj = log |Mj | ≥ Iεjmax(Ej ;Uj)τ .

We finally state the cardinality bounds of U1,U2 as Lemma 3.3 below. This completes the proof of the converse.

Lemma 3.3: The cardinalities of {U1,U2} for RQC−fb
outer can be upper bounded as:

|Uj | ≤ |X1||X2||Y|; for j ∈ {1, 2} . (78)

The proof is very similar to that of Lemma 1.3, as U1, U2 are classical, and is given in Appendix B-C.

D. Asymptotic iid expansion

We now give the asymptotic iid characterization of the rate region for simulating a CS-QC MAC with feedback.

Corollary 3.1: Consider the classical scrambling QC-MAC NA1A2→Y X1X2 with feedback, given by (46) and
inputs ρA1

1 ⊗ ρA2

2 with their respective purifications of form |φ1⟩E1A1 ⊗ |φ2⟩E2A2 . The rate region for simulating
NA1A2→Y X1X2 using infinite shared randomness between each sender-receiver pair and classical communication
over links of (R1, R2) is given by:

RQC−fb
iid = cl


⋃

τE1E2X1X2U1U2Y :
(E1,E2)→(X1,X2)→(U1,U2)→Y
& τE1E2X1X2Y =ηE1E2X1X2Y

|U1|,|U2|≤|X1||X2||Y|

{(R1, R2) : Rj ≥ I(Ej ;Uj)τ , j ∈ {1, 2}}


. (79)
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Proof: Asymptotic iid Inner Bound: The one-shot inner bound can be straight away extended to obtain the
optimal asymptotic iid rate region. Let (R1, R2) ∈ RQC−fb

iid be such that for any ζ > 0,

Rj ≥ I(Ej ;Uj)τ + ζ, (80)

for some τE1,E2,X1,X2,U1,U2,Y having the form described by (49) and satisfying τE1,E2,Y = ηE1,E2,Y . Consider the
following n-letter iid extension of τ , defined as τ (n)E1E2X1X2U1U2Y

:= τ⊗n
E1E2X1X2U1U2Y

. Note that

τ
(n)
E1E2Y

= τ⊗n
E1E2Y

= η⊗n
E1E2Y

. (81)

Now, the AEP for the smoothed max-mutual information (see (101)of Fact 8) yields

lim
n→∞

1

n

[
Iεj−δ
max (En

j , U
n
j )τ (n) + 2 log

(
1

δ

)]
= I(Ej ;Uj)τ ,

which by (80) means that

nRj ≥ Iεj−δ
max (En

j , U
n
j )τ (n) + 2 log

1

δ
, (82)

for all sufficiently large n (depending on ζ). This along with (81) implies RQC−fb
iid ⊆

(
RQC−fb

inner

)(n)
(ε1, ε2), where

(
RQC−fb

inner

)(n)
(ε1, ε2) =

{
(R1, R2) : nRj ≥ Iεj−δ

max (En
j ;U

n
j )τ (n) + 2 log

1

δ
; for j ∈ {1, 2}

}
. (83)

Asymptotic iid Outer Bound: In order to prove the converse, for any ε ∈ (0, 1) we first define the following
ε-approximate iid region as follows:

RQC−fb
iid (ε) := {(R1, R2) : Rj ≥ I(Ej ;Uj)τ ,∀ τE1,E2,X1,X2,U1,U2,Y is of form given in (49)

such that
∣∣∣∣τE1,E2,Y − ηE1,E2,Y

∣∣∣∣
tvd

≤ ε
}
. (84)

We will now use the extension of the one-shot converse of Lemma 3.2. In order to do so, for any ε1, ε2, ε ∈ (0, 1)

such that max{ε1, ε2} ≤ ε/4, let
(
RQC−fb

outer

)(n)
(ε1, ε2, ε) be the n-fold extension of the region RQC−fb

outer (ε1, ε2, ε)

with respect to the iid inputs |φj⟩⊗n
EjAj

(for j ∈ {1, 2}) and general auxiliary random variables Un
j ∼ pUn

j |Xn
j

.

Suppose (R1, R2) ∈
(
RQC−fb

outer

)(n)
(ε1, ε2, ε) with

τ
(n)
E1E2X1X2U1U2Y

:= Σ
xn
1 ,x

n
2

un
1 ,u

n
2 ,y

n

p⊗n
X1

(x1)pUn
1 |Xn

1
(un1 |xn1 ) |x1⟩⟨x1|

⊗n
X1

⊗ |un1 ⟩⟨un1 |Un
1
p⊗n
X2

(x2)pUn
2 |Xn

2
(un2 |xn2 ) |x2⟩⟨x2|

⊗n
X2

⊗ |un2 ⟩⟨un2 |Un
2
⊗ (φx1

)⊗n
E1

⊗ (φx2
)⊗n
E2

⊗ pY n|Un
1 ,Un

2
(yn|un1 , un2 ) |yn⟩⟨yn|Y n

be the state induced by any n-fold simulation code. Suppose (R1, R2) ∈
(
RQC−fb

outer

)(n)
(ε1, ε2, ε) satisfying∣∣∣∣∣∣∣∣(τ (n))En

1 E
n
2 X

n
1 X

n
2 Y

n

−
(
ηE1E2X1X2Y

)⊗n
∣∣∣∣∣∣∣∣
tvd

≤ ε (as 2(ε1 + ε2) ≤ ε). (85)

Then,

nRj ≥ Iεjmax(E
n
j ;U

n
j )τ (n)

(a)
= Imax(E

n
j ;U

n
j )τ ′(n)

(b)

≥ I(En
j ;U

n
j )τ ′(n)

(c)

≥ I(En
j ;U

n
j )τ (n) − 2εj log |Ej |n − 2h2

(
εj

1 + εj

)
(d)

≥ nI(Ej ;Uj)τEjUj
− 2εj log |Ej |n − 2h2

(
εj

1 + εj

)
,
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⇒ lim
εj→0

lim
n→∞

I
εj
max(En

j ;U
n
j )τ (n)

n
≥ lim

εj→0
lim
n→∞

[
nI(Ej ;Uj)τEjUj

− 2εj log |Ej |n − g(εj)

n

]
= I(Ej ;Uj)τEjUj

,

where (a) holds by choosing τ
′(n) ∈ Bεj (τ

(n)
EjUj

) to be the optimizer for Iεjmax(En
j ;U

n
j )τ (n)

EjUj

; (b) holds by the fact

the Imax(E;U)τ ′ ≥ I(E;U)τ ′ for any state τ ′E,U ; (c) follows from continuity of mutual information from Fact 6

with g(εj) = 2h2

(
εj

1+εj

)
; (d) follows by Proposition 2. This implies

Rj ≥ I(Ej ;Uj)τ .

Note that (85) and monotonicity of trace distance implies that
∣∣∣∣τE1E2X1X2Y − ηE1E2X1X2Y

∣∣∣∣
tvd

≤ ε (see also (99)).
Hence, we have shown that in the asymptotic iid limit:

lim
ε1,ε2→0

lim
n→∞

(
RQC−fb

outer

)(n)
(ε1, ε2, δ) ⊆ Riid(ε). (86)

We have thus recovered the asymptotically optimal region of [5, Theorem 1, Theorem 3] up to δ. Since, we also
have that cardinalities of the auxiliary random variables are bounded, we can directly apply [14, Lemma 6] (see
Fact 7 for a detailed analysis) to recover the asymptotically optimal region of Corollary 3.1 as follows:

RQC−fb
outer := lim

ε→0
lim
n→∞

(
RQC−fb

outer

)(n)
(ε1, ε2, ε) ⊆ RQC−fb

iid = lim
ε→0

RQC−fb
iid (ε).

Thus we have shown that in the asymptotic iid limit:

RQC−fb
outer ⊆ Riid ⊆ lim

n→∞

(
RQC−fb

inner

)(n)
(ε1, ε2) ⊆ RQC−fb

outer

⇒ RQC−fb
inner := lim

ε1,ε2→0
lim
n→∞

(
RQC−fb

inner

)(n)
(ε1, ε2) = RQC−fb

iid = RQC−fb
outer .

VII. CONCLUSION

In this work, we have provided one-shot inner and outer bounds for simulating a two-independent user classical
MAC, with unlimited shared randomness for fixed product inputs and also universally for two independent arbitrary
inputs. Further, we have derived the corresponding generalizations to the classical scrambling QC-MAC with
feedback and fixed inputs and provided a tight asymptotic iid rate region. There are plentiful of interesting connected
open problems, e.g., characterizing the rate region of CS-QC MAC without feedback, as well its universal rate
region. Yet, another challenging and immediate open problem is the fixed input and universal simulation of fully
quantum MACs. This would call for further in depth understanding and interpretation of the global Markov condition
(A1, A2) → (U1, U2) → Y and how that can aid in viewing the MAC as two point-point channels. Another technical
issue would be to bound the cardinalities of the quantum auxiliary systems U1, U2 , both in one-shot and asymptotic
iid settings and prove a matching single-letter asymptotic iid converse.

Potential applications of our simulation techniques are in one-shot quantum multi-user rate distortion theory [16],
characterizing the communication complexity of computing a function across a network [17], remotely preparing a
target quantum state between several users and analyzing the related dynamical resource theory [7], and simulating
other general network topologies.
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APPENDIX

ORGANIZATION

In the following appendices we give the key technical tools used to prove our results for the one-shot classical
and classical scrambling QC-MAC simulation, along with the proofs of some of the main lemmas of this work.
Although these tools are not new and has a quite exhaustive literature, we state the versions that we use in our
proofs. We also give proofs of some of our key lemmas in some of the sections of the following appendices.
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APPENDIX A
REJECTION SAMPLING AND CONVEX SPLIT LEMMA

We use the version of rejection sampling inspired from [18] and developed in [11]. We first state the accept-reject
technique to shape one distribution to some other distribution of interest.

Fact 1: [11, Lemma 1] Let Y be sampled from the distribution qY and pY denote the target distribution for
sampling Y . Assume p, q satisfy p ≪ q. Let M ≥ 1 be an integer. Suppose Y1, Y2, . . . , YM ∼ qY be iid random
variables. Define λ := maxy∈Y

pY (y)
qY (y) = 2Dmax(pY ||qY ). Then there exists an algorithm, called accept-reject or

rejection sampling that either outputs a random variable Ỹ ∈ {Y1, . . . , YM} such that for any ε ∈ (0, 1) and a large
enough M satisfying:

2
−
{

M

2Dmax(pY ||qY )

}
≤ ε it holds that

||pY − p̃Y ||tvd ≤ ε,

or outputs an abort message at termination of the algorithm.

Remark 3.1: The choice of M ensuring that the probability that the above accept-reject method aborts is upper
bounded by: (

1− 2−Dmax(pY ||qY )
)M

≤ 2
−
{

M

2Dmax(pY ||qY )

}
≤ ε .

Thus, the accept-reject method outputs a sample distributed according to pY (under no abort with probability at least
1 − ε) using logM ≥ Dmax(pY ||qY ) + log log(1/ε) trials from shared randomness. This can easily be converted
to a point-to-point channel simulation achievability protocol as stated in the Fact 2 and implemented in [11].

Using this fact we now state the specific versions of the one-shot classical point-to-point channel simulation costs
for fixed input and the universal simulation criterion as the following facts:

Fact 2: Let ε > 0 and δ ∈ (0, ε). Now let pX,Y denote a bipartite probability distribution and S ∼ pS shared
randomness between sender Alice and the receiver Bob. Alice sends a message m(x, S) ∈ M to Bob, so that Bob
can generate a sample y(m, s) ε∼ pY |X=x.

(i) An achievable rate (with an almost matching converse) for the above task is given by (by fixing the input
distribution in [11, Theorem 2]):

R := log |M| ≥ Iε−δ
max(X;Y )p + log log

1

δ
,

and the resulting distribution p̃X,Y satisfies EpX
∥p̃Y |X=x − pY |X=x∥tvd ≤ ε.

(ii) An achievable rate for the above task which works independent of pX (also called universal simulation, [11,
Theorem 2]) is:

R := log |M| ≥ Iε−δ
max(pY |X) + log log

1

δ
,

and the resulting distribution p̃X,Y satisfies max
x

∥p̃Y |X=x − pY |X=x∥tvd ≤ ε. Further an almost matching
converse for the universal task is given by [11, Theorem 4]:

R := log |M| ≥ Iεmax(pY |X) .

Finally, for deriving our results for the QC-MAC in Section VI, we need a quantum analogue of rejection
sampling called coherent rejection sampling or the convex split lemma (first formulated in [19]). Again, this is the
core idea used to prove the one-shot measurement compression theorem in [20], which can be modified to carry out
the CS-QC MAC simulation task, as we do here. We remark that the additive fudge term in the convex split lemma
is 2 log 1/δ in contrast with log log 1/δ in the classical setting. This is because the classical rejection sampling ‘fine
tunes’ the input to be correlated with only the accepted sample from the shared randomness whereas the convex
split step correlates input with all the registers of the shared randomness. We state the convex split lemma used in
our proofs as the following fact:
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Fact 3: ( [20, Corollary 2] and [10, Lemma 12]) Let ε > 0 and δ ∈ (0, ε). Consider the following states:

τEU :=
∑
u

p(u)τEu ⊗ |u⟩⟨u|U and σU :=
∑
u

q(u) |u⟩⟨u|U

such that the supp(τU ) ⊆ supp(σU ) and {p(u)}u, {q(u)}u are probability distributions. Further, suppose q is the
distribution achieving the infimum in the definition of Iε−δ

max(E;U)τ (in equation (3)). Let

σ̄U1U2...Un :=
∑

u1,u2,...,un

q̄(u1, u2, . . . , un) |u1u2 . . . un⟩⟨u1u2 . . . un|U1U2...Un

be a quantum state satisfying σ̄Ui = σU for all i ∈ [1 : n] and q̄ be a pairwise independent probability distribution
of Un

1 with each Ui ∼ q. For the following states

τEU1...Un

i :=
∑
u

p(u)τEu ⊗ |u⟩⟨u|Ui ⊗

⊗
j ̸=i

σ̄Uj

 ,

τEU1...Un :=

n∑
i=1

1

n
τEU1...Un

i ,

and the value of parameter n satisfying

log n ≥ Iε−δ
max(E;U)τ + 2 log

1

δ
,

it holds that ∣∣∣∣∣
∣∣∣∣∣τEU1...Un − τE

n⊗
i=1

σUi

∣∣∣∣∣
∣∣∣∣∣
tvd

≤ ε. (87)

The above fact in [20, Corollary 2] proves an upper bound of 2ε + δ in (87) and log n is lower bounded by
Iεmax(E;U)τ . The 2ε term in the distance is due to a different definition of Iεmax. More precisely, the marginal τ

′E

of the optimal state τ ′EU ∈ Bε(τ) for evaluating Iεmax(E;U)τ need not be the same as τE , which is unlike our
Definition 4. Thus, by using our Definition 4 we first reduce the aforementioned distance to ε+ δ. Further we get
rid of the additional δ in the distance by choosing the radius of the ball used for smoothing to be ε − δ instead
of ε (in [20, Corollary 2]), which gives us that log n ≥ Iε−δ

max(E;U)τ . The same modifications were made in [10,
Lemma 12] when the state τEU is fully-quantum, resulting in the similar rate expression. Even with these minor
differences, the asymptotic iid limit of smoothed-Imax (with any of the two definitions) is I(E;U)τ (see e.g. [12],
[21]). We also note that a fully quantum version of the convex split lemma with slightly different definition of Iεmax

was also given in [22]. However this CQ version of the convex split lemma suffices for our purpose.

APPENDIX B
CARDINALITY BOUNDS AND SINGLE-LETTERIZATION

A. Cardinality of U1,U2 for asymptotic iid simulation

The cardinality bounds of U1,U2 were proven in [5, Lemma 5] using the so-called perturbation method of [23,
Claim 1] and support lemma of [24, Appendix C]. We state this result as the following fact:

Fact 4: [5, Lemma 5 and Theorem 3] Given the MAC simulation task in Definition 5 with fixed inputs (X1, X2) ∼
qX1

× qX2
, suppose the cost region for simulating the MAC qY |X1,X2

is given as:

Riid =
{
(R1, R2) : Rj ≥ I(Xj , U

′
j |T )p′ , for j ∈ {1, 2}

}
for some overall distribution

p′X1,X2,U ′
1,U

′
2,Y,T

(x1, x2, u
′
1, u

′
2, y, t) = πT (t)qX1

(x1)qX2
(x2)pU ′

1|X1,T (u
′
1|x1, t)pU ′

2|X2,T (u
′
2|x2, t)pY |U ′

1,U
′
2,T

(y|u′1, u′2, t)
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such that E
T∼[1:n]

[
pX1,X2,Y |T (x1, x2, y)

]
= qX1

(x1)qX2
(x2)qY |X1,X2

(x1, x2). Then the cardinalities of random vari-

ables U ′
1,U ′

2, T can be restricted as follows:

|U ′
j | ≤ |X1||X2||Y|, for j ∈ {1, 2}, (88)

|T | ≤ 2 .

Moreover, one can show that there exists an overall distribution pX1,X2,U1,U2,Y , with cardinalities of Uj as bounded
above in (88) and pXj

= qXj
(for j ∈ {1, 2}) such that pX1,X2,Y = qX1,X2,Y and the cost region can then be

simplified as:
Riid = {(R1, R2) : Rj ≥ I(Xj ;Uj)p, for j ∈ {1, 2}} .

B. Cardinality of U1,U2 for one-shot simulation

We first state the following fact on a characterization of the max-mutual information of two correlated random
variables.

Fact 5: [9, Lemma B.5] The max-mutual information between a pair of jointly distributed random variables
(X,U) ∼ pX,U is given by:

Imax(X;U)p = max
x,u

log

(
pX,U (x, u)

pX(x)qU (u)

)
= max

x,u
log

(
pX,U (x, u)|X |

pX(x)
{∑

x′ pU |X(u|x′)
}) ,

where qU (u) :=
∑

x
pU|X(u|x)

|X | is the optimal distribution in the Definition 2 of Imax.

We now prove Lemma 1.3 that upper bounds the cardinalities of auxiliary alphabets U1,U2.

Proof: The proof is very similar to the proof [5, Lemma 5]. We show that the cardinalities of the auxiliary
alphabets can be brought down to |Uj | ≤ |X1||X2||Y| for j ∈ {1, 2}. The essential property of any entropic quantity
under consideration, that is required to bound |Uj |, is that it should be invariant under the perturbed distribution.
The entropic quantity considered here is Imax. We note that the cost region is expressed in terms of smoothed
Imax(Xj , Uj) and not in terms of I(Xj ;Uj), hence a separate proof than that of Fact 4 is needed. For this we use
the perturbation method first developed in [8, Lemma 1 and 2] and then simplified in [23, Claim 1].
Along the lines of the perturbation method ( [23, Claim 1]), we consider an optimization of the weighted sum
ν1Imax(X1;U1) + ν2Imax(X2;U2) for non-negative real numbers ν1, ν2 and come up with new auxiliary random
variables with reduced alphabet sizes and not increasing the weighted sum, along with preserving the constraints
on pX1,X2,U1,U2,Y from Lemma 1.2.

Thus, for a given p(x1, x2, u1, u2, y), consider the Lyapunov perturbation L(u1) and the perturbed distribution
pε defined by:

pε(x1, x2, u1, u2, y) := p(x1, x2, u1, u2, y)(1 + εL(u1)) . (89)

Note that the ε above can be negative. Clearly, for pε(x1, x2, u1, u2, y) to be a valid probability distribution, it
should hold that (1 + εL(u1)) ≥ 0 for all u1, and Σu1

p(u1)L(u1) = 0. We will further consider perturbations
L(u1) satisfying

E
U1∼p(u1)

[L(U1)|X1 = x1, X2 = x2, Y = y] =
∑
u1

L(u1)p(u1|x1, x2, y) = 0, ∀x1, x2, y . (90)

Note that the marginal distribution of X1, X2 is unchanged under the above perturbation, that is, pε(xj) = p(xj)
for j ∈ {1, 2} and that pε(u1|x1) = p(u1|x1)(1 + εL(u1)).
(89) can also be seen as a linear equation LTP (u|x1, x2, y) = 0, where L = {L(u1)}u1

is a vector and
[P (u1|x1, x2, y)]|U1|×|X1||X2||Y| is a stochastic matrix. Thus, by the rank-nullity theorem the range space of
[P (u1|x1, x2, y)]T|U1|×|X1||X2||Y| is of dimension at most |X1||X2||Y| and hence a non- trivial (non-zero) perturbation
exists as long as |U1| > |X1||X2||Y|. Further, for sufficiently small values of |ε|, we also have (1+εL(u1)) ≥ 0 for all
u1. A simple check ensures that this perturbation preserves the distribution p(x1, x2, y). Similarly, a straightforward
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marginalization of (89) also ensures that the global Markov constraint (X1, X2) → (U1, U2) → Y holds also for
the perturbed distribution pε.

Now if the distribution p(x1, x2, u1, u2, y) minimize ν1Imax(X1;U1) + ν2Imax(X2;U2), then for any valid
perturbation, the following first derivative condition must hold:

d

dε
(ν1Imax(X1;U1)pε

+ ν2Imax(X2;U2)pε
)

∣∣∣∣
ε=0

= 0 (91)

We now evaluate weighted sum term under the perturbed distribution pε(·). Using (89) and Fact 5 we get that
Imax(X1;U1)pε

remains unaltered due to perturbation as:

Imax(X1;U1)pε
= max

x1,u1

log

 pX1,U1
(x1, u1)(1 + εL(u1))|X1|

pX(x)
{∑

x′
1
pU1|X1

(u1|x′1)(1 + εL(u1))
}


= max
x1,u1

log

 pX1,U1
(x1, u1)|X1|

pX(x)
{∑

x′
1
pU1|X1

(u1|x′1)
}


= Imax(X1;U1)p .

We also get from (89) pε(x2, u2) = p(x2, u2) and thus Imax(X2;U2)pε
= Imax(X2;U2)p. Note that from Fact 5

(91) is automatically satisfied. Now, we choose ε such that minu1
(1 + εL(u1)) = 0 (such an ε always exists

since ε can be negative) and let u1 = u∗1 attain this minimum. This implies pε(u∗1) = 0, and hence we can
reduce the cardinality of U1 by 1 or equivalently there exists a U ′

1 such that |U ′
1| ≤ |U1| − 1 and the minimum of

ν1Imax(X1;U1)+ ν2I(X2;U2) is preserved. Finally, we can proceed by induction until |U1| = |X1||X2||Y|, beyond
which we are no longer guaranteed the existence of a non-trivial perturbation L(u1) satisfying (90). Hence we
can restrict the cardinality to |U1| ≤ |X1||X2||Y|. A very similar argument can be carried out for bounding the
cardinality |U2| ≤ |X1||X2||Y|.
The same analysis can be carried out for the rate region of Lemma 1.2 and Lemma 2.2, where the rates are
governed by smoothed max-mutual information Iεmax(Xj ;Uj)p and the channel smoothed max-mutual information
can be described as Iεjmax(pUj |Xj

) = I
εj
max(Xj ;Uj)pXj

pUj |Xj
, since I

εj
max(pUj |Xj

) is independent of the choice of
input. We can repeat the entire argument by replacing the distribution p with p′, such that p′Xj ,Uj

∈ Bε(pXj ,Uj
) and

P ′
Xj

= pXj
, without disturbing the global Markov property. The only change is that we will start with the Lyapunov

perturbation of the distribution pX1
p′U1|X1

pX2
p′U2|X2

pY |U1,U2
instead of pX1

pU1|X1
pX2

pU2|X2
pY |U1,U2

. Then, one can
run the same argument by first considering p′γ(u1|x1) = (1+γL(u1)) and showing that Iεmax(X1;U1)qX1

p′
γ(u1|x1) =

Iεmax(X1;U1)p. Note that under this perturbation Iεmax(X2;U2)p remains unchanged. Then the similar analysis can
be done by considering the perturbation of qX2

p′U2|X2
(u2|x2) ∈ Bε(qX2

pU2|X2
(u2|x2)), by keeping qX2

fixed. This
shows that it suffices to choose U1, U2 with cardinality |Uj | ≤ |X1||X2||Y| and the region Router stays the same.

Remark 3.2: Another technique to prove cardinality bounds of auxiliary random variables in classical information
theory is support lemma (a corollary of Fenchel-Eggleston-Carathéodory’s theorem) [24, Appendix C] and recently
a fully quantum version of it was developed for Imax by [7]. However, it does not suffice for our purpose. The
reason being that the global Markov chain (X1, X2) → (U1, U2) → Y cannot be preserved using support lemma.
Hence, we have to use the perturbation technique as in the proof above. It is for this reason, the cardinaility bounds
for the asymptotic iid case as shown in [5, Lemma 5] are also proven using the perturbation method.

C. Cardinality of U1,U2 for CS-QC MAC simulation

Proof of Lemma 3.3:

Proof: The proof is very similar to that of the proof of Lemma 1.3 since the auxiliary random variables U1, U2

are classical and are generated conditioned on Xj , the output of the measurement operators of the channel. We
have:

Imax(Ej ;Uj)τ = inf
rUj

∥∥∥(τEj ⊗ rUj
)−1/2

τEjUj
(
τEj ⊗ rUj

)−1/2
∥∥∥
∞
, (92)
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where τEjUj :=
∑
xj ,uj

pXj
(xj)

[
pUj |Xj

(uj |xj) |uj⟩⟨uj |Uj

]
⊗ φ

Ej
xj . Since rUj is classical it can be chosen to be of

form:
rUj =

∑
uj

rUj
(uj) |uj⟩⟨uj |Uj ,

for any probability distribution rUj
. Substituting this and τEj =

∑
xj

pXj
(xj)φ

Ej
xj in (92) we get:

Imax(Ej ;Uj)τ

= inf
rUj

∥∥∥∥∥∥∥
∑
xj ,uj


∑

x
′
j

pXj
(x

′

j)φx
′
j

−1/2

φxj

 ′′∑
xj

pXj
(x

′′

j )φx
′′
j

−1/2
⊗

pXj
(xj)pUj |Xj

(uj |xj)
rUj

(uj)
|uj⟩⟨uj |

∥∥∥∥∥∥∥
∞

(a)
=

∥∥∥∥∥∥∥
∑
xj ,uj


∑

x
′
j

pXj
(x

′

j)φx
′
j

−1/2

φxj

 ′′∑
xj

pXj
(x

′′

j )φx
′′
j

−1/2
⊗

pXj
(xj)|Xj |pUj |Xj

(uj |xj)∑
x′
j
pUj |Xj

(uj |x′j)
|uj⟩⟨uj |

∥∥∥∥∥∥∥
∞

,

(93)

where (a) follows because Uj is classical and only depends on classical Xj and consequently from Fact 5.
With this identification we can essentially repeat the proof of Lemma 1.3 given in Section B-B. In order to do
this we can perturb only the distribution pUj |Xj

in the state τ defined in (49), that is used to evaluate RQC−fb
outer .

Since the quantity Imax(Ej ;Uj)τj depends on Uj via pUj |Xj
, it follows exactly from the proof in Section B-B that

Imax(Ej ;Uj) remains the same under perturbation. The rest of the proof is exactly the same as that in Section B-B.

D. Single letterization of asymptotic expansion for MAC simulation

Here, we prove a single-letter characterization of Router. Although, this is a well known technique in classical
information theory, yet an argument is always needed for the task under consideration. Hence, we give a self
contained proof to show that our one-shot rate region can be lifted to the asymptotic iid setting and also can be
single-letterized to match the outer bound of [5, Theorem 4].

Proposition 1: Consider any n-letter simulation code that induces the joint distribution

p′Xn
1 ,U

n
1 ,Xn

2 ,U
n
2 ,Y n(xn1 , u

n
1 , x

n
2 , u

n
2 , y

n) := q⊗n
X1

(x1)q
⊗n
X2

(x2)p
′
Un

1 |Xn
1
(un1 |xn1 )p′Un

2 |Xn
2
(un2 |xn2 )p′Y n|Un

1 ,Un
2
(yn|un1 , un2 ),

(94)
such that p′Xn

1 ,X
n
2 ,Y

n = q⊗n
X1
q⊗n
X2
q⊗n
Y |X1,X2

. Suppose the rate pair (R1, R2) satisfy:

Rj ≥
1

n
I(Xn

j , U
n
j )p′ , for j ∈ {1, 2}.

Then,
Rj ≥ I(Xj ;Uj)p for j ∈ {1, 2} ,

for some distribution pX1,U1,X2,U2,Y := qX1
qX2

pU1|X1
pU2|X2

pY |U1,U2
such that pX1,X2,Y = qX1

qX2
qY |X1,X2

.

Proof: The proof follows mostly by standard arguments. An important point is to ensure that the cardinalities
of the auxiliaries (U1, U2) are bounded, which is ascertained by Fact 4.

The proof of single-letterization is as follows (for j ∈ {1, 2}):

Rj ≥
1

n
I(Xn

j ;U
n
j )p′

=
1

n

[
H(Xn

j )q⊗n
Xj

−H(Xn
j |Un

j )p′

]
(a)
=

1

n

[
n∑

i=1

H(Xj,i)qXj
−H(Xn

j |Un
j )p′

]
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=

n∑
i=1

1

n

[
H(Xj,i)qXj

−H(Xn
j,i|Xi−1

j,1 , U
n
j )p′

]
(b)

≥
n∑

i=1

1

n

[
H(Xj,i)qXj

−H(Xj,i|Uj, i)p′

]
=

n∑
i=1

1

n
I(Xj,i;Uj,i)p′

(c)
=

n∑
i=1

1

n
I(Xj,i;Uj,i|T = i)p′

= I(Xj,T ;Uj,T |T )p′

(d)
= I(Xj ;Uj,T , T )πT p′ , (95)

where (a) follows by iid distribution of Xj ; (b) holds by the fact that conditioning reduces entropy; (c) follows
by identifying the so-called time-sharing random variable T , uniformly distributed on {1, 2, . . . , n} with p.m.f.
πT (i) =

1
n and independent of X1, X2, U1, U2, Y ; (d) holds because Xj,T |= T and with the identification Xj,T = Xj .

Now we define Uj := (Uj,T , T ), Yj := Yj,T and the joint distribution

pX1,X2,U1,U2,Y :=

n∑
i=1

1

n
p′X1,i,X2,iU1,i,U2,1,Y |T=i .

The above defined p satisfy the marginal property (or the simulation constraint):∑
u1,u2

p(x1, x2, u1, u2, y) =
∑
u1,u2

n∑
i=1

1

n
p′X1,i,X2,iU1,i,U2,1,Yi|T (x1, x2, u1, u2, y|T = i)

=

n∑
i=1

1

n

∑
u1,u2

p′X1,i,X2,iU1,i,U2,1,Yi
(x1, x2, u1, u2, y)

(i)
=

n∑
i=1

1

n
qX1

(x1)qX2
(x2)qY |X1X2

(y|x1, x2)

= qX1
(x1)qX2

(x2)qY |X1X2
(y|x1, x2),

where (i) follows from (94).
Finally, from Fact 4, we have that it suffices to take Uj with cardinality |Uj | ≤ |X1||X2||Y|. We have thus identified
p that satisfies the simulation constraint and using this p in (95), we obtain

Rj ≥ I(Xj ;Uj)p .

E. Single letterization for asymptotic expansion of CS-QC MAC simulation

We now state and prove a proposition that ensures that CS-QC MAC simulation with feedback has a single-letter
characterization.

Proposition 2: Consider any n-letter simulation code, that induces the state

τ
′En

1 X
n
1 U

n
1 En

2 X
n
2 U

n
2 Y n

:=
∑
xn
1 ,x

n
2

un
1 ,u

n
2 ,y

n

p⊗n
X1

(x1)p
⊗n
X2

(x2)p
′
Un

1 |Xn
1
(un1 |xn1 )p′Un

2 |Xn
2
(un2 |xn2 )p′Y n|Un

1 ,Un
2
(yn|un1 , un2 ) |xn1 ⟩⟨xn1 |Xn

1

|un1 ⟩⟨un1 |Un
1
⊗ |xn2 ⟩⟨xn2 |Xn

2
⊗ |un2 ⟩⟨un2 |Un

2
⊗
(
φE1
x1

)⊗n ⊗
(
φE2
x2

)⊗n ⊗ |yn⟩⟨yn|Y n
1
, (96)
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such that τ
′En

1 E
n
2 Y

n

= η⊗n
E1E2Y

. Suppose the rate pair (R1, R2) satisfy:

Rj ≥
1

n
I(En

j , U
n
j )τ ′ , for j ∈ {1, 2}.

Then,
Rj ≥ I(Ej ;Uj)τ for j ∈ {1, 2} ,

for some state

τE1X1U1E2X2U2Y :=
∑
x1,x2
u1,u2,y

pX1
(x1)pX2

(x2)pU1|X1
(u1|x1)pU2|X2

(u2|x2)pY |U1,U2
(y|u1, u2)φE1

x1
⊗ φE2

x2
⊗

|x1⟩⟨x1|X1 ⊗ |u1⟩⟨u1|U1 ⊗ |x2⟩⟨x2|X2 ⊗ |u2⟩⟨u2|U2 ⊗ |y⟩⟨y|Y , (97)

such that τE1E2Y = ηE1E2Y .

Proof: The proof is very similar to that of Proposition 1. By Lemma 3.3, we can assume that cardinalities of
|U1|, |U2| are bounded as |Uj | ≤ |X1||X2||Y|. Then, we have

Rj ≥
1

n
I(En

j ;U
n
j )τ ′

=
1

n

[
H(En

j )τ ′ ⊗n
Ej

−H(En
j |Un

j )τ ′

]
(a)
=

1

n

[
n∑

i=1

H(Ej,i)τ ′
Ej,i

−H(En
j |Un

j )τ ′

]

=

n∑
i=1

1

n

[
H(Ej,i)τ ′

Ej,i
−H(Ej,i|Ei−1

j,1 , U
n
j )τ ′

]
(b)

≥
n∑

i=1

1

n

[
H(Ej,i)τ ′

Ej,i
−H(Ej,i|Uj,i)τ ′

]
=

n∑
i=1

1

n
I(Ej,i;Uj,i)τ ′

(c)
=

n∑
i=1

1

n
I(Ej,i;Uj,i|T = i)τ ′

= I(Ej,T ;Uj,T |T )τ ′

(d)
= I(Ej ;Uj,T , T )πT τ ′ , (98)

where (a) follows by iid distribution of Ej ; (b) holds by the fact that conditioning reduces entropy; (c) follows
by identifying the so-called time-sharing random variable T , uniformly distributed on {1, 2, . . . , n} with p.m.f.
πT (i) =

1
n , and independent of E1, E2, U1, U2, Y ; (d) holds because Ej |= T and with the identification Ej,T = Ej .

Now we define Uj := (Uj,T , T ), Xj := Xj,T , Yj := Yj,T (Xj,T , Yj,T |= T ) and the overall state

τE1X1U1E2U2Y :=

n∑
i=1

1

n

∑
x1,i,x2,i
u2,i,u1,i,y

p′X1,i|T=i(x1,i)p
′
X2,i|T=i(x2,i)p

′
U1,i|X1,i,T=i(u1,i|x1,i)p

′
U2,i|X2,i,T=i(u2,i|x2,i)

p′Y |U1,i,U2,i,T=i(y|u1,iu2,i) |x1,i⟩⟨x1,i|
X1,i ⊗ |x2,i⟩⟨x2,i|X2,i φE1

x1,i
⊗ φE2

x2,i
⊗ |u1,i⟩⟨u1,i|U1 ⊗ |u2,i⟩⟨u2,i|U2 ⊗ |y⟩⟨y|Y .

The above defined τ satisfies the simulation constraint since:

τE1E2X1X2Y = Tr

 ∑
x1,x2
u1,u2,y

n∑
i=1

1

n
p′X1,i,X2,iU1,i,U2,i,Yi|T (x1, x2, u1, u2, y|T = i) |x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2 ⊗
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φE1
x1

⊗ φE2
x2

⊗ |u1,i⟩⟨u1,i|U1,i ⊗ |u2,i⟩⟨u2,i|U2,i ⊗ |yi⟩⟨yi|Y
]

(i)
= Tr

 ∑
x1,x2
u1,u2,y

pX1,X2,U1,U2,Y (x1, x2, u1, u2, y) |x1⟩⟨x1|
X1 ⊗ |x2⟩⟨x2|X2 ⊗ φE1

x1
⊗ φE2

x2
⊗

|u1⟩⟨u1|U1 ⊗ |u2⟩⟨u2|U2 ⊗ |y⟩⟨y|Y
]

(ii)
= Tr

 ∑
x1,x2
u1,u2,y

pX1
(x1)pX2

(x2)pU1|X1
(u1|x1)pU2|X2

(u2|x2)pY |U1,U2
(y|u1, u2) |x1⟩⟨x1|X1 ⊗ |x2⟩⟨x2|X2

⊗φE1
x1

⊗ φE2
x2

⊗ pX2
(x2)φ

E2
x2

⊗ qY |X1X2
(y|x1, x2) |y⟩⟨y|Y

]
= ηE1E2X1X2Y , (99)

where (i) holds by defining

pX1,X2U1,U2,Y (x1, x2, u1, u2, y) : =

n∑
i=1

1

n

∑
u1,u2

p′X1,i,X2,iU1,i,U2,1,Yi
(x1, x2, u1, u2, y)

= pX1
(x1)pX2

(x2)pU1|X1
(u1|x1)pU2|X2

(u2|x2)pY |U1,U2
(y|u1, u2),

and (ii) follows from (96) and the identification of p in (i) above.
We have thus identified τ that satisfies the simulation constraint and using this τ in (98), we obtain

Rj ≥ I(Ej ;Uj)τ .

F. Continuity of the ε-rate region

We start with the following fact about the continuity of mutual information I(A;B)τAB with respect to τA,B having
a fixed marginal τA. When both the systems A and B are classical, the continuity bounds of [25, Theorem 17.3.3]
and [14, Lemma 4]) suffice. However, an improved version of the continuity of mutual information for general
quantum states was proven in [26, Lemma 2] known as the Alicki-Fannes-Winter continuity bound, which also
applies to classical bipartite distributions. We state this result as the following fact:

Fact 6: [26, Lemma 2] Let ρ
′AB and ρAB be two quantum states on the joint Hilbert space HAB such that

ρA = ρ′A. Then for any ε ∈ (0, 1), it holds that:∣∣∣∣∣∣ρAB − ρ
′AB
∣∣∣∣∣∣
tvd

≤ ε⇒ |I(A;B)ρ − I(A;B)ρ′ | ≤ 2ε log |A|+ 2h2

(
ε

1 + ε

)
.

We now state and prove that the asymptotic extension of our outer bound, that is, Riid
outer(ε) converges to Riid as

mentioned in Corollary 1.1. Since this is a direct consequence of [14, Lemma 6], we state it as the following fact
and include the similar proof for completeness.

Fact 7: [14, Lemma 6] Consider the asymptotic iid setting for simulating a MAC qY |X1,X2
with inputs qX⃗ =

qX1
× qX2

(see Definition 5) for any ε ∈ (0, 1). Let an outer bound for this task be given by:

Riid
outer(ε) :=

{
(R1, R2) : Rj ≥ I(Xj ;Uj)p, for j ∈ {1, 2}, pX⃗,U⃗,Y s.t. E

qX⃗

∣∣∣∣∣∣pY |X⃗ − qY |X⃗

∣∣∣∣∣∣
tvd

≤ ε

}
with |Uj | ≤ |X1||X2||Y| for j ∈ {1, 2} then:

Riid =
⋂
ε>0

Riid
outer(ε),
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where Riid :=
{
(R1, R2) : Rj ≥ I(Xj ;Uj)p, for j ∈ {1, 2}, pX⃗,U⃗,Y s.t. pX⃗,Y = qX⃗,Y

}
.

Proof: Since any rate pair (R1, R2) ∈ Riid lies in Riid
ε for all ε > 0, therefore it holds that Riid ⊆⋂

ε>0
Riid

outer(ε). The reverse direction
⋂
ε>0

Riid
outer(ε) ⊆ Riid is quite non-trivial, for which we sketch the steps

below. Consider a sequence {εi}i≥1 such that lim
i→∞

εi = 0. Also, let

P(r⃗) :=
{
pX⃗,U⃗,Y : qX1

qX2
pU1|X1

pU2|X2
pY |U1,U2

and pX⃗,Y = qX⃗,Y with {|Uj |}2j=1 ≤ |X1||X2||Y|
}
.

Pε(r⃗) :=
{
pX⃗,U⃗,Y : qX1

qX2
pU1|X1

pU2|X2
pY |U1,U2

and
∣∣∣∣∣∣pX⃗,Y − qX⃗,Y

∣∣∣∣∣∣
tvd

≤ ε with {|Uj |}2j=1 ≤ |X1||X2||Y|
}
.

Now, we take a rate pair, say R⃗∗ = (R∗
1, R

∗
2) ∈

⋂
ε>0

Riid
outer(ε). There is a sequence of p.m.f. pi(x⃗, u⃗, y) ∈ Pεi(r⃗)

corresponding to this rate pair. These p.m.f.s belong to the probability simplex P of dimension |X1||X2||U1||U2||Y|
and since the cardinalities of |U1|, |U2| are bounded therefore the probability simplex is compact. Thus, there exists
a subsequence {ik}k≥1 such that the subsequence of p.m.f. {pik(x⃗, u⃗, y)}k≥1 converges to some p∗(x⃗, u⃗, y) in the
probability simplex.
The key point of the proof is that p∗(x⃗, u⃗, y) ∈ P(r⃗). This can be proven by using the continuity of the total
variation distance and the mutual information in the probability simplex. In particular, this follows from

||p∗(x⃗, y)− q(x⃗, y)||1 = lim
k→∞

||pik(x⃗, y)− q(x⃗, y)||1 = 0 ⇒ p∗(x⃗, y) = q(x⃗, y)

Furthermore, since (X1i, U1i) |= (X2i, U2i) and the Markov condition (X1i, X2i) → (U1i, U2i) → Yi holds for all
i ≥ 1, the same also holds in the limiting case.
Finally it can also be shown that R⃗∗ is a point of Riid corresponding to the p.m.f. p∗(x⃗, u⃗, y). By using Fact 6,
we get:∣∣∣∣∣∣p∗Xj ,Uj

− pXj ,Uj

∣∣∣∣∣∣
tvd

≤ ε⇒
∣∣∣I(Xj ;Uj)p∗

Xj,Uj
− I(Xj ;Uj)pXj,Uj

∣∣∣ ≤ 2ε log(|Xj |)− 2h2

(
ε

1 + ε

)
:= g(ε).

This implies that lim
ε→0

g(ε) = 0. Hence, Riid
outer(εik) converges to Riid. This completes the proof.

APPENDIX C
ASYMPTOTIC EQUIPARTITION PROPERTY (AEP)

A. Asymptotic expansion for fixed input

We state the AEP for smoothed max-mutual information for a classical distribution (see (34) following Theorem 9
of [10]) and a CQ state (equation (107) following Theorem 11 of [10]).

Fact 8: [10, Equations (34),(107)] Let qXpX|U = pX,U ∈ P be any joint distribution and τEU ∈ D(HEU ) be
any quantum state. Then for any ε ∈ (0, 1), it holds that

lim
n→∞

1

n
Iεmax(X : U)p⊗n

X,U
= I(X : U)pX,U

, and (100)

lim
n→∞

1

n
Iεmax(E : U)(τE,U )⊗n = I(E : U)τE,U . (101)

B. Asymptotic expansion for universal simulation

We now state the AEP for smoothed max-mutual information of the channel. This is obtained by taking the limit
limn→∞ in [11, Corollary 9] resulting in the following fact:

Fact 9: [11, Corollary 9] For any point-to-point channel pU |X and ε ∈ (0, 1), it holds that

lim
n→∞

1

n
Iεmax(p

⊗n
U |X) = max

qX
I(X;U)qXpU|X .
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APPENDIX D
UNIVERSAL MAC SIMULATION

A. Proof of Lemma 2.1

We start by giving the achievability proof of Lemma 2.1.

Proof: Fix (ε1, ε2, δ) satisfying the conditions of Lemma 2.1 and choose auxiliary channels pU1|X1
, pU2|X2

and
the decoder pY |U1,U2

from the set Ainner, given in (39). We need to show that for any (R1, R2) ∈ Rinner
U (ε1, ε2, δ)

(defined in (38)), there exists an (R1, R2, ε) one-shot universal MAC simulation protocol as mentioned in Definition
8.

We will use the universal point-to-point channel simulation algorithm of Fact 2-(ii) to simulate the auxiliary
channels pUj |Xj

independently at each sender j ∈ {1, 2}.

• Sender-j: Let sUj
be a distribution with full support and choose Uj ∼ sUj

as the shared randomness between
the pair (Ej ,D). Using the rejection sampling algorithm mentioned in Fact 1, sender j sends the appropriately
chosen index of the shared randomness using Rj bits to simulate the auxiliary channel pUj |Xj

, irrespective of
any particular input qXj

.
• Decoding: After receiving the transmitted index of shared randomness from both the encoders, the decoder

first generates (U1, U2) and applies the stochastic map Y ∼ pY |U1,U2
to universally simulate qY |X1,X2

.
• Hence, the output distribution of Uj at D, denoted by palgoUj |Xj

satisfies (from Fact 2-(ii)):

max
xj

∣∣∣∣∣∣palgoUj |Xj=xj
− pUj |Xj=xj

∣∣∣∣∣∣
tvd

≤ εj . (102)

The amount of classical communication required to achieve this target distribution is given by the universal
point-to-point channel simulation protocol from Fact 2-(ii) as :

Rj ≥ Iεj−δ
max (pUj |Xj

) + log log
1

δ
.

Thus, our algorithm generates the overall distribution

palgoX1,X2,U1,U2,Y
= qX1

× qX2
× palgoU1|X1

× palgoU2|X2
pY |U1,U2

. (103)

Note that the input distributions qXj
(xj) above are arbitrary and play no role in the simulation criteria given by

(36).
To complete the proof, we finally need to show

max
x1,x2

∥palgoY |X1=x1,X2=x2
− qY |X1=x1,X2=x2

∥tvd ≤ ε1 + ε2.

This follows by the following chain of inequalities:

max
x1,x2

∥palgo
Y |X1=x1,X2=x2

− qY |X1=x1,X2=x2
∥tvd

(a)

≤ max
x1,x2

∥palgo
Y |X1=x1,X2=x2

− pY |X1=x1,X2=x2
∥tvd +max

x1,x2

∥pY |X1=x1,X2=x2
− qY |X1=x1,X2=x2

∥tvd

(b)
= max

x1,x2

∥∥∥∥ Σ
u1,u2

pY |U1=u1,U2=u2

(
palgo
U1|X1

(u1)p
algo
U2|X2

(u2)− pU1|X1
(u1|x1)pU2|X2

(u2|x2)
)∥∥∥∥

tvd

= max
x1,x2

Σ
u1,u2

Σ
y
pY |U1,U2

(y|u1, u2)
∣∣∣(palgo

U1|X1
(u1)p

algo
U2|X2

(u2)− pU1|X1
(u1|x1)pU2|X2

(u2|x2)
)∣∣∣

(c)

≤ max
x1,x2

∥palgo
U1|X1=x1

palgoU2|X2=x2
− palgoU1|X1=x1

pU2|X2=x2
∥tvd +max

x1,x2

∥palgo
U1|X1=x1

pU2|X2=x2
− pU1|X1=x1

pU2|X2=x2
∥tvd

= max
x1

∥palgo
U1|X1=x1

∥1max
x2

∥palgoU2|X2=x2
− pU2|X2=x2

∥tvd +max
x2

∥pU2|X2=x2
∥1max

x1

∥palgo
U1|X1=x1

− pU1|X1=x1
∥tvd

(d)

≤ ε1 + ε2
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where (a) and (c) follow from the triangle inequality and the fact that maximum value of the sum of two non-
negative functions is less than or equal to the sum of their individual maximum values; (b) follows from the
definition of distribution induced by the code in (103) and (d) follows from (102).
We have thus shown that there exists an (R1, R2, ε1 + ε2) code for universally simulating qY |X1,X2

which implies
Rinner

U (ε1, ε2) ⊆ RU.

B. Proof of Lemma 2.2

We now prove Lemma 2.2, the converse for the one-shot universal MAC simulation task.

Proof: Let (ε1, ε2) and ε satisfy the conditions of the lemma. We need to show that any (R1, R2, ε) MAC
simulation protocol according to Definition 8 has (R1, R2) ∈ Router

U (ε1, ε2) (defined in (40)), which implies
RU ⊆ Router

U (ε1, ε2).

Consider a MAC simulation protocol with any arbitrary input qX1
× qX2

and the overall distribution as
2⊗

j=1

(
qXj

qSj
p′Mj |Sj ,Xj

)
p′
Y |M⃗,S⃗

.

The encoders are specified by p′M1|X1,S1
and p′M2|X2,S2

, and the decoder is specified by p′Y |M1,M2,S1,S2
. Since, the

code is a faithful simulation code, we have from Definition 8:

max
x1,x2

∣∣∣∣∣∣p′Y |X1=x1,X2=x2
− qY |X1=x1,X2=x2

∣∣∣∣∣∣
tvd

≤ ε = ε1 + ε2. (104)

We now use a similar intuition as in Lemma 1.2 to identify the auxiliary random variables for simulating qY |X1,X2
.

Define the following set for every vector x⃗ = (x1, x2)

C̄x⃗ :=

{
(m⃗, s⃗) : p′Mj |Sj ,Xj

(mj |sj , xj) ≥
εj

|Mj |
, j = 1, 2

}
. (105)

We henceforth denote the projection of Cx⃗ onto (Mj , Sj , Xj) (or the jth user) as Cxj
and we make the similar

identification for their respective complements.
Note that by union bound, we have

Pp′(Cx⃗) ≤
2∑

j=1

P
({

p′Mj |Sj ,Xj
(mj |sj , xj) ≤

εj
|Mj |

})
≤ ε1 + ε2, (106)

where we have used:

Pp′

({
(mj , sj) : p

′
Mj |Sj ,Xj

(mj |sj , xj) ≤
ε

|Mj |

})
=

∑
(mj ,sj):p′

Mj |Sj,Xj
(mj |sj ,xj)≤

εj

|Mj |

p′Sj
(sj)p

′
Mj |Sj ,Xj

(mj |sj , xj)

⇒ Pp′(Cxj
) ≤

∑
(mj ,sj)

εj
|Mj |

qSj
≤ εj . (107)

Hence, Pp′(C̄x⃗) ≥ 1− ε1 − ε2, for all x⃗.
Consider the distribution defined as follows:

pMj ,Sj |Xj
(mj , sj |xj) :=


p′
Sj

(sj)p′
Mj |Sj,Xj

(mj |sj ,xj)

Pp′ (C̄xj
)

, if mj , sj ∈ C̄xj

0 otherwise .
(108)

We have thus identified the auxiliary random variable {Uj}2j=1 for each xj as:

Uj := (Mj , Sj)11C̄xj
≡ pUj |Xj

(uj |xj) := pMj ,Sj |Xj
(mj , sj |xj) =

p′Sj
(sj)p

′
Mj |Sj ,Xj

(mj |sj , xj)11(mj ,sj)∈C̄xj

Pp′(C̄xj
)

.
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Using this we identify the conditional distribution pU⃗,Y |X⃗ as:

pU⃗,Y |X⃗(u⃗, y|x⃗) :=



2⊗
j=1

[
p′
Sj

(sj)p′
Mj |Sj,Xj

(mj |sj ,xj)

Pp′ (C̄xj
)

]
p′
Y |S⃗,M⃗

(y|s⃗, m⃗), if mj , sj ∈ C̄xj(
=

2⊗
j=1

[
p′
Uj |Xj

(uj |xj)11mj,sj∈C̄xj

Pp′ (C̄xj
)

]
p′
Y |U⃗

(y|u⃗)

)
,

0, otherwise.

(109)

Now, we identify the complete joint distribution p defined as follows:

pX⃗,U⃗,Y (x⃗, u⃗, y) :=


2⊗

j=1

[
qXj

(xj)p′
Uj |Xj

(uj |xj)

Pp′ (C̄xj
)

]
p′Y |U1,U2

(y|u1, u2), if (u⃗) ∈ C̄x⃗

0, otherwise.

(110)

Note that (107) also gives:

max
x⃗

∣∣∣∣∣∣pY |X⃗=x⃗ − p′
Y |X⃗=x⃗

∣∣∣∣∣∣
tvd

= max
x⃗

∣∣∣∣∣∣∣∣ Σ
m⃗,s⃗

(
pM⃗,S⃗|X⃗=x⃗ − p′

M⃗S⃗|X⃗=x⃗

)
p′
Y |M⃗=m⃗,S⃗=s⃗

∣∣∣∣∣∣∣∣
tvd

(111)

≤
max
x⃗

∑
(m⃗,s⃗)∈Cx⃗

|p(m⃗, s⃗|x⃗)− p′(m⃗, s⃗|x⃗)|+max
x⃗

∑
(m⃗,s⃗)∈C̄x⃗

|p(m⃗, s⃗|x⃗)− p′(m⃗, s⃗|x⃗)|

2

=
1

2
max
x⃗

Pp′(Cx⃗) +
1

2
max
x⃗

Pp′(C̄x1
)Pp′(C̄x2

)

(
1

Pp′(C̄x1
)Pp′(C̄x2

)
− 1

)
≤ ε1 + ε2 . (112)

Finally we define the following distribution on the random variable Uj(= (Mj , Sj)) that will be used to evaluate
the quantity Iεmax(pUj |Xj

) for j ∈ {1, 2}:

rUj
(uj) := qSj

(sj)
1

|Mj |
(113)

These identifications leads to the following implications on the rate of the protocol:

2I
εj
max(pUj |Xj

)
(a)

≤ 2
Dmax(p′

Xj,Uj
||p′

Xj
×rUj

)

= max
xj

max
uj

p′Xj ,Uj
(xj , uj)

p′Xj
(xj)rUj

(uj)

(b)
= max

xj

max
(mj ,sj)

qSj
(sj)p

′
Mj |SjXj

(mj |sj , xj)
qSj

(sj)/|Mj |
(c)

≤ |Mj |, (114)

where (a) follows from the definition of channel smoothed Imax in Definition 3 and observing that distribution
pUj |Xj=xj

= pMj ,Sj |Xj=xj
∈ Bεj (p′Mj ,Sj |Xj=xj

) because:

max
xj

∣∣∣∣∣∣pUj |Xj=xj
− p′Uj |Xj=xj

∣∣∣∣∣∣
tvd

= max
xj

1

2

∑
mj ,sj

∣∣∣p′Mj ,Sj |Xj
(mj , sj |xj)− pMj ,Sj |Xj

(mj , sj |xj)
∣∣∣

= max
xj

1

2

 ∑
mj ,sj∈C̄xj

p′Mj ,Sj |Xj
(mj , sj |xj)

(
1

Pp′(C̄xj
)
− 1

)
+

∑
mj ,sj∈Cxj

p′Mj ,Sj |Xj
(mj , sj |xj)


= Pp′(Cxj

) ≤ εj ( from (107)),
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(b) follows from the identification of Uj = (Mj , Sj) for all p′ and the Bayes rule and
(c) follows since p′Mj ,Sj |Xj

(mj , sj |xj) ≤ 1 and the definition of rj(Uj).
We thus have from (114), the rate of the code is lower bounded by:

Rj = log |Mj | ≥ Iεjmax(pUj |Xj
) for j ∈ {1, 2}.

From (112) we have that pY |X⃗=x⃗ ∈ Bε1+ε2(p′
Y |X⃗=x⃗

). This along with the simulation constraint of (104) yields by
the triangle inequality:

max
x⃗

∣∣∣∣∣∣pY |X⃗=x⃗ − qY |X⃗=x⃗

∣∣∣∣∣∣
tvd

≤ 2(ε1 + ε2). (115)

We have thus identified the auxiliary channels pU1|X1
, pU2|X2

and a distribution pY |U1,U2
:= p′Y |U1,U2

(from the
decoder of the simulation protocol), such that:

(pU1|X1
, pU2|X2

, pY |U1,U2
) ∈ Aouter

ε ,

where the set Aouter
ε is given in (42) and the rate of any (R1, R2, ε)-simulation code is bounded below by:

Rj ≥ Iεjmax(pUj |Xj
).

To complete the proof, we require a bound on the cardinalities of U1, U2, which is same as given in Lemma 1.3
and proven in Appendix B-B.

C. Asymptotic expansion

We will extend the single-letter universal protocol to the asymptotic iid case and show that the rate region can
still be single-letterized. We split the proof into two parts showing that the asymptotic inner and outer bounds
converge to Riid

U . Throughout the proof, we choose the parameters εj > 0 and δ ∈ (0,min{ε1, ε2, 1− ε1, 1− ε2}).

1) Asymptotic iid Universal Inner Bound: We extend the universal one-shot inner bound to obtain the optimal
universal asymptotic iid rate region. Let (R1, R2) ∈ Riid

U (defined in (44)) be such that for any η > 0,

Rj ≥ max
qXj

I(Xj ;Uj)qXj
pUj |Xj

+ η, (116)

for some pU1,U2,Y |X = pU |X1
pU2|X2

pY |U1,U2
satisfying p(y|x1, x2) = q(y|x1, x2), for all x1, x2. Consider

pUn
1 |Xn

1
= p⊗n

U1|X1
, pUn

2 |Xn
2
= p⊗n

U2|X2
and pY n|Un

1 ,Un
2
= p⊗n

Y |U1,U2
. (117)

Note that the triple

(pUn
1 |Xn

1
, pUn

2 |Xn
2
, pY n|Un

1 ,Un
2
) ∈ A(n)

inner, (118)

where the set A(n)
inner is the nth extension of the set Ainner defined in (39) of Theorem 2. The AEP from

Fact 9 for the channel smoothed max-mutual information gives

lim
n→∞

1

n

[
n ·max

qXj

I(Xj ;Uj)qXj
pUj |Xj

+ log log
1

δ

]
= max

qXj

I(Xj ;Uj)qXj
pUj |Xj

.

which from (116) means that

nRj ≥ Iεj−δ
max (p⊗n

Uj |Xj
) + log log

1

δ
, (119)

for all sufficiently large n (depending on η). Hence, (118) and (119) together, in the asymptotic limit n→ ∞
and εj → 0 imply Riid

U ⊆ R(n)
U,inner(ε1, ε2), where

R(n)
U,inner(ε1, ε2) =

{
(R1, R2) : nRj ≥ Iεj−δ

max (pUn
j |Xn

j
) + log log

1

δ
; for j ∈ {1, 2}

}
. (120)
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2) Asymptotic iid Universal Outer Bound: In order to prove that the asymptotic extension of the universal
one-shot outer bound is the region Riid

U , for any ε ∈ (0, 1) we first define the following ε-approximate
universal iid region as follows:

Riid
U (ε) :=

{
(R1, R2) : Rj ≥ max

qXj

I(Xj ;Uj)qXj
pUj |Xj

, ∀ pX1,X2,U1,U2,Y = qX1
qX2

pU1|X1
pU2|X2

pY |U1,U2

such that max
x1,x2

∥∥∥∥∥∑
u1,u2

p(u1|x1)p(u2|x2)p(y|u1, u2)− q(y|x1, x2)

∥∥∥∥∥
tvd

≤ ε

 . (121)

We will now use the converse of Theorem 2 to an n-letter universal simulation block code with the dis-
tribution pUn

1 |Xn
1
pUn

2 |Xn
2
pY n|Un

1 ,Un
2

. For any ε ∈ (0, 1) and ε1, ε2 > 0 such that max{ε1, ε2} ≤ ε/4, let
R(n)

U,outer(ε1, ε2, ε) be the n-fold extension of the region Router
U (ε1, ε2, ε) with respect to the input and auxiliary

random variables (Xn
j , U

n
j ) ∼ q⊗n

Xj
pUn

j |Xn
j

. Suppose (nR1, nR2) ∈ R(n)
U,outer(ε1, ε2, ε) with pXn

1 ,U
n
1 ,Xn

2 ,U
n
2 ,Y n :=

q⊗n
X1
q⊗n
X2
pUn

1 |Xn
1
pUn

2 |Xn
2
pY n|Un

1 ,Un
2

being the distribution induced by any n-fold simulation code satisfying

max
xn
1 ,x

n
2

∥∥∥∥∥∥
∑
un
1 ,u

n
2

p(un1 |xn1 )p(un2 |xn2 )p(yn|un1 , un2 )−
n⊗

i=1

q(yi|x1,i, x2,i)

∥∥∥∥∥∥
tvd

≤ ε (as 2(ε1 + ε2) ≤ ε). (122)

Then, we have

nRj ≥ Iεjmax(pUn
j |Xn

j
)

(a)
= max

q
X

⊗n
j

min
p̄Un

j
|Xn

j
∈Bεj (pUn

j
|Xn

j
)
min
rUn

j

Dmax

(
q⊗n
Xj
p̄Un

j |Xn
j

∥∥∥∥q⊗n
Xj

× rUn
j

)
≥ max

q
X

⊗n
j

min
p̄Un

j
|Xn

j
∈Bεj (pUn

j
|Xn

j
)
min
rUn

j

D

(
q⊗n
Xj
p̄Un

j |Xn
j

∥∥∥∥q⊗n
Xj

× rUn
j

)
(b)
= max

q
X

⊗n
j

min
p̄Un

j
|Xn

j
∈Bεj (pUn

j
|Xn

j
)
min
rUn

j

D

q⊗n
Xj
p̄Un

j |Xn
j

∥∥∥∥q⊗n
Xj

×

∑
xn
j

q⊗n
Xj

(xj)p̄Un
j |Xn

j =xn
j




= max
q
X

⊗n
j

min
p̄∈Bεj (pUn

j
|Xn

j
)
I(Xn

j ;U
n
j )p̄

(c)

≥ max
q
X

⊗n
j

[
I(Xn

j ;U
n
j )qX⊗n

j
pUn

j
|Xn

j
− 2h2

(
εj

1 + εj

)
− 2nεj log(|Xj |)

]
(d)

≥ max
qXj

[
nI(Xj ;Uj)qXj

pUj |Xj
− 2h2

(
εj

1 + εj

)
− 2nεj log(|Xj |)

]
where (a) follows since the smoothed channel max-information is independent of the input distribution

from (2) (b) follows from the fact that the minimum in D

(
q⊗n
Xj
p̄Un

j |Xn
j

∥∥∥∥q⊗n
Xj

× rUn
j

)
is achieved at rUn

j
=∑

xn
j
q⊗n
Xj

(xj)p̄Un
j |Xn

j
; (c) follows from Fact 6 and cardinality bounds on Uj from Lemma 1.3; and (d) follows

by a similar analysis to that of Proposition 1 (by maximizing over inputs qX⃗ ) for some pU1,U2,Y |X1,X2
=

pU1|X1
pU2|X2

pY |U1,U2
satisfying max

x⃗

∣∣∣∣∣∣pY |X⃗=x⃗ − qY |X⃗=x⃗

∣∣∣∣∣∣
tvd

≤ ε due to monotonicity of trace distance.
By taking the limits lim

εj→0
lim
n→∞

, we get

Rj ≥ lim
εj→0

lim
n→∞

max
qXj

I(Xj ;Uj)qXj
pUj |Xj

−
2h2

(
εj

1+εj

)
n

− 2εj log(|Xj |)


= max

qXj

lim
εj→0

lim
n→∞

I(Xj ;Uj)qXj
pUj |Xj

−
2h2

(
εj

1+εj

)
n

− 2εj log(|Xj |)
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= max
qXj

I(Xj ;Uj)qXj
pUj |Xj

.

Hence, we have shown that in the asymptotic iid limit:

lim
n→∞

R(n)
U,outer(ε1, ε2, ε) ⊆ Riid

U (ε). (123)

Since, in our setting we have bounded cardinalities of the auxiliary random variables, we can directly apply
[14, Lemma 6] in our case (see Fact 10 for exact statement) to obtain

lim
ε→0

lim
n→∞

R(n)
U,outer(ε) := Riid

U,outer ⊆ Riid
U = lim

ε→0
Riid

U (ε).

Thus we have shown that in the asymptotic iid limit:

Router
U ⊆ Riid

U ⊆ lim
n→∞

R(n)
U,inner ⊆ Router

U ,

⇒Rinner
U := lim

ε1,ε2→0
lim
n→∞

R(n)
U,inner(ε1, ε2) = Riid

U = Router
U .

The following fact states that the region limε→0Riid
U (ε) = Riid

U .

Fact 10: Consider the asymptotic iid setting for universally simulating a MAC qY |X1,X2
(see Definition 8) for

any ε ∈ (0, 1). Let an outer bound on the cost region for this task be

Riid
U (ε) :=

{
(R1, R2) : Rj ≥ max

pXj

I(Xj ;Uj)pXj
pUj |Xj

, j ∈ {1, 2}, pX⃗,U⃗,Y s.t. max
x⃗

∣∣∣∣∣∣pY |X⃗=x⃗ − qY |X⃗=x⃗

∣∣∣∣∣∣
tvd

≤ ε

}
,

with |Uj | ≤ |X1||X2||Y| for j ∈ {1, 2} then:

Riid
U =

⋂
ε>0

Riid
U (ε),

where Riid
U :=

{
Rj ≥ maxpXj

I(Xj ;Uj)pXj
pUj |Xj

, for j ∈ {1, 2}, pX⃗,U⃗,Y s.t.pY |X⃗=x⃗ = qY |X⃗=x⃗

}
.

The proof of the above fact is almost the same as that of Fact 7 using the continuity of the function
maxpXj

I(Uj ;Xj)pXj
pUj |Xj

with respect to the argument pUj |Xj
(see [27, Lemma 12 and Corollary 13] by considering

pUj |Xj
as channels).

APPENDIX E
ONE-SHOT MEASUREMENT COMPRESSION

A. Task and achievability

We first recall one of the most fundamental theorems of quantum information theory that is used to prove
the existence of an isometry which can serve as either encoder or a decoder. This is the following widely used
Uhlmann’s theorem.

Fact 11: Uhlmann’s Theorem [28] Consider (finite dimensional) density matrices ρA, σA. Let |ψρ⟩AB be a
purification of ρA, and let |ϕσ⟩AC be a purification of σA. Then there exists an isometry V C→B such that,

F ((IA ⊗ V ) |ϕσ⟩⟨ϕσ| (IA ⊗ V †), |ψρ⟩⟨ψρ|) = F (ρA, σA), where F (ρ, σ) :=
∣∣∣∣√ρ√σ∣∣∣∣

1
.

We now state a version of Uhlmann’s theorem for CQ states, which we shall be using in our achievability proof
of Lemma 3.1.

Fact 12: [20, Claim 4] Let φEE′U , τEIU be two CQ states of the form

φEE′U :=
∑
u

p(u) |u⟩⟨u|U ⊗ |φu⟩⟨φu|EE′
and τEIU :=

∑
u

q(u) |u⟩⟨u|U ⊗ |τu⟩⟨τu|EI .
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Then there exists a set of isometries indexed by the contents of the classical register U , denoted by {V E′→I
u } such

that

F

({∑
u

|u⟩⟨u|U ⊗ IE ⊗ Vu

}
φEE′U

{∑
u

|u⟩⟨u|U ⊗ IE ⊗ V †
u

}
, τEIU

)
= F

(
φEU , τEU

)
.

We now define the task of one-shot measurement compression with feedback which was studied in [20].

Definition 12: [20, Definition 1] Let ΛA→X be a quantum measurement described as

ηEX := ΛA→X(ψEA) := Σ
x
Tr[Λxρ

A] |x⟩⟨x|X ⊗ ψE
x

and let |ψ⟩EA be any purification of ρA. Then for any given ε ∈ (0, 1), a purification |η⟩EE′XX′
of ηEX , with

X ∼= X ′, an (R, ε)-quantum measurement compression protocol with feedback consists of:

• A pre-shared random state SA′A′′
between the sender and the receiver

• A rate limited noiseless classical channel of rate R;
• Encoder Emeas. comp. : HX′ ⊗HS → [1 : 2R] and a Decoder Dmeas. comp. : [1 : 2R]⊗HS → HX such that∣∣∣∣∣∣Dmeas. comp. ◦ Emeas. comp.(η

EE′XX′ ⊗ SA′A′′
)− ηEE′XX′

∣∣∣∣∣∣
tvd

≤ ε.

Note that the amount of classical communication required for the above task is R bits.

An achievable rate for the above measurement compression task was given in [20, Theorem 1]. To obtain a one-shot
achievable rate for simulation of CS-QC MAC with feedback, we will employ the protocol of [20] individually for
each sender. However, we characterize the required rate in terms of our definition of Iεmax (see (3)) by modifying
the analysis slightly. The exact statement of the convex split lemma for CQ states with its characterization in terms
of Iεmax according to (3) is given in Fact 3.

We further recall that the task of quantum measurement compression with feedback is very similar to that of
quantum state splitting [21]. Both these tasks, in turn use convex split lemma of Fact 3 to quantify the rate. We
also use Fact 3 to derive our CS-QC MAC with feedback simulation rate region and hence the minute distinction
between measurement compression with feedback and quantum state splitting is not useful for our purpose. In
fact we essentially prove the achievability for the task of Definition 12 (similar to that of [20, Theorem 1], but
with a slightly different definition of Iεmax) to derive RQC−fb

inner (ε1, ε2, δ) given by (51) in Definition 11. This is
because we can equivalently see our encoding as the simulation of the post-measurement states |φj⟩EjE′

jXjX′′
j UjŨj

by compressing Ũj and allowing the receiver to reconstruct it, so that the overall joint-state shared with the receiver
is still close to |φj⟩EjE′

jXjX′′
j UjŨj and receiver holds the register Ũj relabelled as Ūj in Lemma 3.1 (see (58)).

B. Proof of Lemma 3.1

We give a self-contained proof of the achievable rates mentioned in Lemma 3.1. This follows by the direct
application of the convex split lemma to the states |φj⟩EjE′

jXjX′′
j UjŨj with the shared randomness as nj-fold iid

copy of S
U ′

jU
′′
j

j :=
∑

uj
p̃Uj

(uj) |uj⟩⟨uj |U
′
j ⊗ |uj⟩⟨uj |U

′′
j , where the registers U ′

j,1, . . . , U
′
j,nj

are held by the sender
and U ′′

j,1, . . . , U
′′
j,nj

are held by the receiver. Further, the distribution p̃Uj
of the shared randomness is the optimizing

distribution on Uj in the definition Iεj−δ
max (Ej ;Uj)φj

(see (3)). Recall that the CQ state |φj⟩ from (58) and its reduced

state φEjŨj

j from (57) are given as:

|φj⟩EjE′
jXjX′′

j UjŨj =
∑
xj ,uj

√
pXj ,Uj

(xj , uj) |xjxj⟩XjX′′
j |ujuj⟩UjŨj |φxj

⟩EjE′
j and

φ
EjŨj

j =
∑
uj

pUj
(uj) |uj⟩⟨uj |Ũj ⊗ φ̃Ej

uj
, with φ̃Ej

uj
=
∑
xj

pXj |Uj
(xj |uj)φEj

xj
.
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We will thus use the convex split lemma from Fact 3 for transmitting Ũj to the receiver such that the correlation
of Uj with the (untouched) environment Ej is (almost) preserved. We define the following convex split state and
its CQ extension with the quantum system of the CQ state being pure, for each sender j:

µ
EjU ′

j,1,...,U
′
j,nj

j :=
1

nj

nj∑
ij=1

φj
EjU ′

j,ij

⊗
k ̸=ij

S
U ′

j,k

j ,

µ
EjIjXjX′′

j U
′
j,1U

′′
j,1...U

′
j,nj

U ′′
j,nj

j :=
∑

u1,...,unj

p̃U1,...,Unj
(u1, . . . , unj

) |u1 . . . unj
⟩⟨u1 . . . unj

|U
′
j,1...Uj,n′

j

⊗ |u1 . . . unj
⟩⟨u1 . . . unj

|U
′′
j,1...U

′′
j,nj ⊗


 nj∑

ij=1

1
√
nj

|ij⟩Ij |φuij
⟩EjE′

jXjX′′
j

 nj∑
ij=1

1
√
nj

⟨ij |Ij ⟨φuij
|EjE′

jXjX′′
j

 ,

(124)

where |φuij
⟩EjE′

jXjX′′
j =

∑
xj

√
pXj |Uj

(xj |uij ) |ϕxj
⟩EjE′

j |xjxj⟩XjX′′
j . Similarly, we have the following CQ exten-

sion with the quantum system being pure, of the state φEj

j ⊗
(

nj

⊗
ij=1

S
U ′

j,ij

j

)
:

φ
EjE′

jXjX′′
j UjŨjU ′

j,1U
′′
j,1...U

′
j,nj

U ′′
j,nj

j =
∑

u1,...,unj

p̃Uj,1,...,Uj,nj
(u1, . . . , unj

) |u1, . . . , unj
⟩⟨u1, . . . , unj

|U
′
j,1...U

′
j,nj

⊗ |u1, . . . , unj
⟩⟨u1, . . . , unj

|U
′′
j,1...U

′′
j,nj ⊗ |φj⟩⟨φj |EjE′

jXjX′′
j UjŨj . (125)

Convex split lemma from Fact 3 implies that for log nj ≥ I
εj−δ
max (Ej ;Uj) + 2 log 1

δ , it holds that:∣∣∣∣∣
∣∣∣∣∣φEj

j

nj⊗
k=1

S
U ′

j,k

j − µ
EjU ′

j,1,...,U
′
j,nj

j

∣∣∣∣∣
∣∣∣∣∣
tvd

≤ εj . (126)

We can now apply the CQ Uhlmann’s theorem from Fact 12 due to the desired structure of the CQ extensions
of µj and φuj

in equations (124) and (125) , respectively. Thus, from Fact 12 there exists a conditional isometry

V
E′

jXjX′′
j UjŨj→E′

jXjX′′
j Ij

u1,...,unj
such that, for

ν̃
EjIjU ′

j,1U
′′
j,1...U

′
j,nj

U ′′
j,nj

j :=

 ∑
u1,...,unj

|u1 . . . unj
⟩⟨u1 . . . unj

|U
′
j,1...U

′
j,nj ⊗ Vu1,...,unj

 |φj⟩⟨φj | ⊗ Sj

=
∑

u1,...,unj

p̃Uj,1,...,Uj,nj
(u1, . . . , unj

) |u1 . . . unj
⟩⟨u1 . . . unj

|U
′
j,1...U

′
j,nj ⊗ |u1 . . . unj

⟩⟨u1 . . . unj
|U

′′
j,1...U

′′
j,nj (127)

⊗ |φ̃j⟩⟨φ̃j |EjXjX′′
j Ij , (128)

where
|φ̃j⟩EjE′

jXjX′′
j Ij :=

∑
xj

√
p̃Xj |Uj

(xj |uij ) |φxj
⟩EjE′

j |xj⟩Xj ⊗ |xj⟩X
′′
j ⊗ |ij⟩Ij ,

ij depends on the contents of shared randomness u1, . . . , unj
and the classical registers Uj , Ũj (since Uj is classically

correlated with Ej via Xj , the action of the isometry above holds without any loss of generality), we get:∣∣∣∣∣∣∣∣ν̃EjE′
jXjX′′

j IjU
′
j,1U

′′
j,1...U

′
j,nU

′′
j,nj

j − µ
EjE′

jXjX′′
j IjU

′
j,1U

′′
j,1...U

′
j,nj

U ′′
j,nj

j

∣∣∣∣∣∣∣∣
tvd

≤ εj . (129)

• We now give a protocol that allows the receiver to recover the state φ̃EjXjŪj

j

εj∼ φ
EjXjŨj

j (by recovering Ūj

from Ũj):

1) Ej has the state |φj⟩⟨φj |EjE′
jXjX′′

j UjŨj as input with access to the random state
nj⊗
k=1

S
U ′

j,kU
′′
j,k

j shared with the

receiver. Ej applies the conditional isometry Vu1,...,unj
, conditioned on the contents of the shared randomness
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register from (127), to the input and obtains the state ν̃j . This creates the necessary correlation between Ej

and the shared random state Sj and is recorded in the register Ij .
2) Ej then measures the register Ij and sends the classical message ij using log nj bits to the receiver. Thus,

the rate of the protocol is (from Fact 3):

Rj := log nj ≥ Iεj−δ
max (Ej ;Uj)τ + 2

(
log

1

δ

)
. (130)

Note that log nj here is the rate Rj of the main CS-QC MAC simulation protocol for Lemma 3.1.
3) The final overall state is φ̃EjXjŪj

j . Using (129) the encoder Ej can pretend as if step 2 is applied on the
state µj as input, which would have resulted in the overall output state of the protocol with Uj ∼ pUj

at the
receiver’s end. Thus, the encoder for our CS-QC MAC simulation protocol is

Ej,meas.comp = {|ij⟩⟨ij |}Ij ◦
∑

u1,...,unj

|u1 . . . unj
⟩⟨u1 . . . unj

|U
′
j,1...U

′
j,nj ⊗ V

E′
jXjX′′

j UjŨj→E′
jXjX′′

j Ij
u1...unj

,

where {|ij⟩⟨ij |}Ij denotes the measurement in the computational basis |ij⟩⟨ij | for the jth-sender. The receiver
picks up the shared random register U ′′

j,ij
given in (127) and relabels it to Ūj , as its finally recovered state.

4) Let the step 2 of the encoder Ej measuring Ij and transmitting the measurement outcome ij and the step 3
of the receiver recovering Ūj from U ′′

j,ij
register be represented as a quantum operation Oj .

Thus we have:∣∣∣∣∣∣φEjXjUj

j − φ̃
EjXjŪj

j

∣∣∣∣∣∣
tvd

(a)
=

∣∣∣∣∣
∣∣∣∣∣µEjXjUj

j −Oj

(
|φj⟩⟨φj |

nj⊗
k=1

|Sj⟩⟨Sj |

)∣∣∣∣∣
∣∣∣∣∣
tvd

(b)

≤ εj , (131)

where (a) follows from steps 2 and 3 of the protocol above defining Oj ; (b) follows from the equation (129)
and the monotonicity of the total variation distance. Hence, from equation (131) we get that:∣∣∣∣pXj ,Uj

− p̃Xj ,Uj

∣∣∣∣
tvd

≤ εj . (132)

To finish the protocol, the decoder of the CS-QC MAC simulation achievability protocol use these states
φ̃
Ūj

j to generate Y ∼ pY |Ū1,Ū2
. Note that the quantum operation Oj = Dj,meas.comp. ◦ Ej,meas.comp. is the

encoder-decoder operation for each sender, before the final decoding of U1, U2 to obtain the desired output
Y .

Remark 3.3: We note that the encoding above is essentially the same as that of [20, Theorem 1]. The only
difference is that the aforementioned reference proves the achievability for one-shot measurement compression with
feedback using a different definition of the smoothed max-mutual information than our Definition 4. If we employ
the achievability of [20, Theorem 1] with the definition of Iεmax considered therein, we get different slack factors.
A direct comparison of the different definitions of smoothed max-mutual information (including our Definition 4)
can be found in [29].
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