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Motivation

classical communication over quantum channels
shared entanglement can help increase communication rates

not always available
⇒ entanglement-assisted strategies become unreliable

consider a potential loss of entanglement in the coding strategy
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Super-Dense Coding

pre-shared entangled pair |ΦAB⟩
noiseless quantum channel N
encoding on the system A
decoding by measuring both particles
classical capacity doubled1

1 bit → 2 bit

1 M. M. Wilde. Quantum Information Theory. 2nd edition. Cambridge: Cambridge University Press, 2017, Chapter 6.2.3.
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Model Application

Unreliable Entanglement Assistance

F encodes message onto GA

GB is available by chance
decoder D depends on availability
of GB
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Coding and Rates

encoder F takes two steps
encoding of m
superposition-coding of m′

decoder D always decodes m
guaranteed rate R

when possible, decode m′

excess rate R′
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Model Application

Classical Capacity
Let NA→B be a given channel, and define

REA∗(N ) =
⋃

pX ,ϕGAGB ,F (x)

{
(R,R′) : R ≤ I(X;B)ω

R′ ≤ I(GB;B|X)ω

}

Theorem

The classical capacity region of a quantum channel NA→B with unreliable entanglement assistance
satisfies 2

CEA∗(N ) =
∞⋃

n=1

1
n
REA∗(N⊗n).

2 U. Pereg, C. Deppe, and H. Boche. “Communication with unreliable entanglement assistance”. In: IEEE Trans. Inf. Theory 69.7 (July 2023), pp. 4579–4599.

June 26, 2024 Jonas Hawellek Communication with Unreliable Entanglement Assistance Page 7



Reliable Entanglement Assistance Unreliable Entanglement Assistance Stochastic Extension Secure Communication Summary & Outlook
Model Application

Coding Strategies

time division of entanglement assistance
guaranteed rate R for some time
unreliable excess rate R′ for the rest of time

superposition strategy
|φ⟩ =

√
β|Φ⟩+

√
1 − β|00⟩

exploit entanglement to some extent
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Depolarizing Channel
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ρ → (1 − ε)ρ + ε
I
2

advantage from superposition
optimal for3 ε ≥ 2

3

3 U. Pereg. “Communication over entanglement-breaking channels with unreliable entanglement assistance”. In: Phys. Rev. A 108.4 (Oct. 2023), p. 042616.
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Erasure Channel I
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Time Division

ρ → (1 − ε)ρ + ε|e⟩⟨e|

no advantage from superposition
time division is optimal for
independent channel input states
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Erasure Channel II

Theorem

The rate region of a qubit erasure channel N with unreliable entanglement assistance and the input
states being constrained to be independent of each other is given by

REA∗(N ) =
⋃

0≤λ≤1

{
(R,R′) : R ≤ (1 − λ)(1 − ε)

R′ ≤ λ(2(1 − ε))

}
, (1)

where λ ∈ [0, 1].

not valid for arbitrary input states
are these expressions in general additive?
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Stochastic Model for the Availability of Entanglement Assistance I

Motivation
model of unreliable entanglement assistance allows for worst-/best-case analysis
physical effects for loss of entanglement are known
effects can be quantified
provide an outage probability to sender and receiver
optimize coding strategy for a mean communication rate
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Stochastic Model for the Availability of Entanglement Assistance II

introduce an entanglement outage probability pout

define the mean communication rate using (R,R′) ∈ REA∗(N )

Rmean = R + (1 − pout)R′
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Differentiation from Other Approaches

Limited Entanglement Assistance 4

entangled pairs are in a pure state
entanglement assistance reliably available
availability limited to some (known) channel uses

Noisy Entanglement Assistance 5

entangled pairs are in a mixed state
entanglement assistance reliably available
noise level limits the maximum exploitable amount of entanglement

4 P. W. Shor. The Classical Capacity Achievable by a Quantum Channel Assisted by Limited Entanglement. Feb. 2004. arXiv: quant-ph/0402129.
5 Q. Zhuang, E. Y. Zhu, and P. W. Shor. “Additive classical capacity of quantum channels assisted by noisy entanglement”. In: Phys. Rev. Lett. 118.20 (May 2017), p. 200503.
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Erasure Channel I
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pout is low:
rely on entanglement assistance

pout is high:
ignore entanglement assistance
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Erasure Channel II
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Depolarizing Channel I
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pout is low:
rely on entanglement assistance

pout increases:
superposition strategy
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Depolarizing Channel II
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Depolarizing Channel III
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entanglement-assisted encoding
stops to be optimal
first decreases to a minimum
later increases continuously
extreme values are unexpected
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Depolarizing Channel III
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Depolarizing Channel III
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Secure Communication with Unreliable Entanglement

wiretap channel NA→BE
adversary has access to environment E

entanglement unreliable, since
photon gets lost
adversary may intercept GB

(figure cf. 6 )

6 M. Lederman and U. Pereg. Secure Communication with Unreliable Entanglement Assistance. Jan. 2024. arXiv: 2401.12861.
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Secrecy Capacity
Let NA→BE be a given channel, and define

RS−EA∗(N ) =
⋃

pX ,ϕGAGB ,F (x)

{
(R,R′) : R ≤ [I(X;B)ω − I(X; EGB)ω]+

R′ ≤ [I(GB;B|X)ω − I(GB; E|X)ω]+

}

Theorem

The secrecy capacity region of a degraded quantum wiretap channel NA→BE with unreliable
entanglement assistance satisfies 7

CS−EA∗(N ) =
∞⋃

n=1

1
n
RS−EA∗(N⊗n).

7 M. Lederman and U. Pereg. Secure Communication with Unreliable Entanglement Assistance. Jan. 2024. arXiv: 2401.12861.
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Summary & Outlook

Summary
model of unreliable entanglement
assistance

classical capacity
application to channel models

extension by a stochastic model
application to channel models

secure communication

Outlook
further analyze behavior of the
depolarizing channel
consider further channel models

implementable ones

apply model to MAC and BC
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Thank You for Your Attention!

Questions?

Comments?
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Capacity Theorems

Theorem (Holevo-Schumacher-Westmoreland8,9)

The classical capacity of a quantum channel NA→B is given by

C(N ) = lim
k→∞

1
k
(max

ρXB
I(X;B)ρ) , (2)

where

ρXB = ∑
x∈X

pX(x)|x⟩⟨x|X ⊗N⊗k
A→B(φx) , (3)

and φx are states for system A at the channel inputs associated with some classical symbol x ∈ X .
8 A. S. Holevo. “The capacity of the quantum channel with general signal states”. In: IEEE Trans. Inf. Theory 44.1 (Jan. 1998), pp. 269–273.
9 B. Schumacher and M. D. Westmoreland. “Sending classical information via noisy quantum channels”. In: Phys. Rev. A 56.1 (July 1997), pp. 131–138.
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Capacity Theorems

Theorem (Bennett-Shor-Smolin-Thapliyal10,11)

The classical capacity of a quantum channel NA→B with reliable entanglement assistance is given
by

CEA = max
ϕAGB

I(B;GB)ω , (4)

where ϕAGB is a pure bipartite state and ωBGB = NA→B(ϕAGB).

10 C. H. Bennett et al. “Entanglement-assisted classical capacity of noisy quantum channels”. In: Phys. Rev. Lett. 83.15 (Oct. 1999), pp. 3081–3084.
11 C. H. Bennett et al. “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem”. In: IEEE Trans. Inf. Theory 48.10 (Oct. 2002), pp. 2637–2655.
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Depolarizing Channel
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we expect the unassisted strategy
to get less relevant with
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Pauli Channel
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(pX , pY , pZ) = (0.100, 0.100, 0.00)

(pX , pY , pZ) = (0.050, 0.100, 0.05)

(pX , pY , pZ) = (0.025, 0.075, 0.10) ρ → pIρ+ pXXρX + pY YρY + pZZρZ

shape of rate regions changes for
different parameter combinations
superposition outperforms time
division in general
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Pauli Channel (Special Case)
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rely on entanglement assistance

pout increases:
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Pauli Channel (Special Case)
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value for pout where fully
entanglement-assisted encoding
stops to be optimal
ε = 0: noiseless channel
ε = 1

2 : bit flips randomize output
ε = 1: phase flips randomize
output
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