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FOREWORD

This script originates from a correspondent lecture Systemics held during the summer term 2025
at the Technical University of Braunschweig. To structure the lecture and support my students in
their learning process, I prepared these lecture notes. Within the lecture, I adapt to the students,
their background and wishes, and I will integrate remarks and corrections throughout the summer
term.
The aim of the module is to provide participating students with knowledge of terms of system
theory and control engineering. Moreover, students shall have knowledge of terms for systems
and be enabled to understand principles of system description, modeling and identification. After
successfully completing the module, students shall additionally be able to apply the discussed
methods and be able to assess results.
The central aims of the lecture are the introduction of modeling and system identification tech-
niques for (dynamical) systems. In particular, we focus on the time domain and model system
using differential equation systems to design

Deterministic Processes as well as

Stochastic Processes.

To deal with these kind of systems properly, we give a short introduction/repetition to differential
equations. Based on these basic models, we then identify „the real“ system, i.e. we fit data to
model. To this end, we introduce basic stochastic definitions and discuss

Least Square Estimation and

Kalman Filtering.

At the end of the lecture, students should understand the concepts, know basic formulas, be able to
comprehend and interpret input and output of the methods and to make a suitable choice between
the presented methods.
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The module itself is accredited with 5 credits.
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CHAPTER 1

INTRODUCTION

In this chapter we give a brief introduction to modelling and identification. We do this by using
a simple example to model and illustrate the pitfalls associated with a model built from noisy
measurements. In addition, we give a recap of terms from differential equations and probability
theory that we will need throughout the lecture.

1.1. What is a “model”?

The first part of the lecture is about modelling. Intuitively, we all know what a model is. We have
identified it by learning to control our actions using predictions about the effects of those actions.
These predictions are based on a model and form a model of reality in our mind. There are simple
connections, e.g. “I push a ball, then it rolls”. We can also build up very complicated systems,
such as cars, supply chains or weather forecasts. The model is therefore something deterministic,
without uncertainty and predictable for all time.
Unfortunately, as we have all experienced, models do not represent reality one to one. So when
we use a model, there can be deviations between the model’s prediction and reality, especially
over long time horizons. The reason for this is as follows: In a model, we always focus on the
aspects we are interested in and do not try to describe all of reality. The problem is therefore
divided into two parts,

the model, which describes what we are interested in, and

the environment, which contains everything else.

Since we cannot tell anything about the environment (because it is not modeled), interactions
between model and environment can only be interpreted as disturbances. As we will see in the
lecture, disturbances can also be modeled/considered and thus estimated.



2

Model

Environment

Figure 1.1.: Model and environment

During the modeling process, six principles need to be met:

1. Principle of Correctness: A model needs to present the facts correctly regarding structure
and dynamics (semantics). Specific notation rules have to be considered (syntax).

2. Principle of Relevance: All relevant items have to be modeled. Non-relevant items have to
be left out, i.e. the value of the model doesn’t decline if these items are removed.

3. Principle of Cost vs. Benefit: The amount of effort to gather the data and produce the model
must be balanced against the expected benefit.

4. Principle of Clarity: The model must be understandable and usable. The required knowl-
edge for understanding the model should be as low as possible.

5. Principle of Comparability: A common approach to modeling ensures future comparability
of different models that have been created independently from each other.

6. Principle of Systematic Structure: Models produced in different views should be capable
of integration. Interfaces need to be designed to ensure interoperability.

This raises an interesting point: Since the modeler and the model user are typically different
entities with different perspectives on the process, a good model for the modeler may be very
different from a good model for the model user. For example, a detailed model may reflect reality
very well, but it may be too complex to evaluate in real time and therefore not usable for feedback
control. Therefore, modelling must be fit for use and the quality of a model is determined by the
degree to which it meets the needs of the model user (“fit for use”).
Combined, the aim of modeling theory is the following:

Modeling theory provides a systematic approach to mathematically describe those
part of the problem, which are sufficient for its fitness of usage, and acknowledge the
necessary conditions for its development.
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In this lecture we focus on the quantitative description of a model, i.e. qualitative results such as
“a ball will roll downhill” are not the kind of model properties we are looking for. Instead, we
use laws, e.g. from physics or econometrics, to describe at least part of our impression of reality.
We will also introduce and discuss properties of systems such as stability and observability.
In general, the (mathematical) description of models varies depending on the time, space and
amplitude properties considered. Figure 1.2 gives a rough overview of these properties.

Time

Space

static continuous time discrete time event triggered

0 D

1 D

2 D

n D

Amplitude

continuous

discrete

Figure 1.2.: Dimensions of model characteristics

These model are subject to parameters, which we aim to estimate later using respective data.

Regarding time, we start off with static models, which are characterized by the fact that
inputs, outputs and measurements of the system are available. In contrast to that, continuous
time models exhibit data streams being received continuously. Discrete time models differ
from that by the availability of data, which is received at certain, not necessarily equidistant
time instances. Last, event triggered models require issues to trigger receiving data.

Regarding space, models may vary from a simple connection to complex systems.

Regarding amplitude, models may differ regarding continuous spaces like e.g. mass and
discrete spaces such as gear shifts.

In general, a dynamic system can be seen as a blackbox, which assigns an output sequence y to a
given input sequence u, cf. Figure 1.3.
Dynamic systems are categorized using a variety of properties, which allow for improved treat-
ment of dynamic systems. Here, we only focus on the main research lines displayed in Table 1.1
below.
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Dynamic systemu y

Figure 1.3.: General structure of a dynamic system

Simple type Complex type

Linear
The system is linear in the input and output
variable.

Nonlinear
The system may not be linear in either the
input or the output variable.

Time invariant
All parameters are constants

Time varying
At least one parameter is time dependent.

Continuous time
Time is given by a real valued variable.

Discrete time
Time is given by sampling instants.

Input output model
Input is directly mapped to output.

State space model
Input triggers changes of an internal state,
output is a linear combination of these in-
ternal states.

Deterministic
None of the variables/parameters is a ran-
dom variable.

Stochastic
At least one variable or parameter is a ran-
dom variable.

Table 1.1.: Division lines for dynamic systems

Within the lecture, we consider models satisfying the so called nonlinear discrete time control
systems form

x(k + 1) = f (x(k), u(k)), (1.1)

y(k) = h(x(k))

or the continuous time form

ẋ(t) = f (x(t), u(t)), (1.2)

y(t) = h(x(t))

where x represents the internal state of the system, u the external force on the system, f the law
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or dynamics of the system, y the measured output, h the output or measurement function and k, t
the discrete and continuous time respectively.
In particular, we will focus on modeling aspects of

Growth Processes,

Mechanical Processes,

Electrical Processes, and

Financial Processes.

Each of these topics is so large that we cannot cover them all. We therefore limit ourselves to
certain aspects of these topics. With regard to growth processes, we will consider a biological
model that can be used to describe the growth of a market for a product or the population of a
species or several competing species. For mechanical processes, we will use the laws of motion to
develop modular models of mechanical processes and introduce the Lagrangian and Hamiltonian
approaches. For electrical processes, we consider the modeling of circuits and discuss the Bond
graph approach. Finally, for financial applications, we will focus on option pricing and consider
the Black-Scholes approach.

1.2. What is “identification”?

In the second part of the lecture we will use a given model and discuss methods to show its
validity. To do this, our task is to match the behaviour of the model to that of the real process,
which is also called fitting. To do this, we need not only the model itself, but also data from
the process and a way to simulate the model. The fit of the simulated data to the real data is
then qualified by an optimisation criterion, which, as described above, is defined by the degree
to which the model satisfies the requirements of the model user. This criterion allows us to fit
the model „best“ in the sense of the criterion. Finally, the model should always be validated, i.e.
tested for failure or inconclusive results. Thus, any identification process consists of a series of
basic steps:

1. Collect information on the system

2. Select a model to represent the system

3. Choose an optimization criterion

4. Fit the model parameters to the measurements accordingly

5. Validate the computed model
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Note that some of the steps may be hidden from the user, or selected without the user being aware
of a choice, which may lead to suboptimal or even poor performance. Unfortunately, fitting laws
or models to observations creates new problems:

First, we consider noisy measurements. In this context, noisy means that when we make
a measurement, e.g. of length, weight, time, etc., errors occur because the instruments we
use are not perfect.

secondly, our laws and models are imperfect because reality is much more complex than
the rules we apply. They also exhibit stochastic behavior, which makes it impossible to
predict their outcome accurately.

To identify the system, we split the model into a deterministic and a stochastic part. The deter-
ministic aspects are captured by the mathematical system model. These are complemented by the
stochastic behavior, which is modeled as a noise distortion. The aim of identification theory is
therefore as follows:

Identification theory provides a systematic approach to fit the mathematical model
to the deterministic part as well as possible, and to eliminate the noise distortions as
much as possible.

Within this lecture, we particularly focus on the techniques of the

Least Square Estimator, and of the

Kalman Filter.

Note that the terms estimator and filter are similar, yet an estimator refers to a static problem and a
filter to a dynamic one. Still, estimators can be applied to dynamical problem, but are not ideally
suited.

1.3. Stochastic parameters

Within identification, we use a finite number of possibly noisy measurements to compute param-
eters within the model. These are therefore stochastic variables. To fully characterise such a
variable, we need its probability density function. In practice, it is very difficult to derive this
function, but it can be described by a few numbers, i.e. the mean and the covariance, which can
be thought of as the location and dispersion of the estimate.
To introduce these numbers formally, we first need the notion of a probability space:
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Definition 1.1 (Probability space).
Consider a set Ω, a set of subsets F ⊆ 2Ω and a function P : F → [0, 1]. Then, we call the triple
(Ω,F , P) a probability space if

the sample space Ω is a non–empty set,

the σ–algebra F of events satisfies

F contains the empty set, i.e.

∅ ∈ F ,

F is closed under complements, i.e.

A ∈ F =⇒ Ω \ A ∈ F ,

F is closed under countable unions, i.e.

Ai ∈ F ∀i ∈ {1, 2, . . . , k}, k < ∞ =⇒
⋃

i∈{1,2,...,k}
Ai ∈ F

the probability measure P satisfies

P is countably additive, i.e.

Ai ∈ F ∀i ∈ {1, 2, . . . , k}, k < ∞ with Ai ∩ Aj = ∅ ∀i, j ∈ {1, 2, . . . , k}, i ̸= j

=⇒ P

 ⋃
i∈{1,2,...,k}

Ai

 = ∑
i∈{1,2,...,k}

P (Ai) ,

the measure of the sample space Ω is one, i.e.

P (Ω) = 1.

In short, a probability space is a measure space, but with the additional property that the measure
of the whole space is equal to one. Secondly, we require so called random variables:

Definition 1.2 (Random variable).
Consider a probability space (Ω,F , P) and a measurable space E with σ–algebra E of E. Then
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we call a function X : Ω → E a random variable if

∀B ∈ E : X−1(B) ∈ F , where X−1(B) := {ω ∈ Ω | X(ω) ∈ B} .

Hence, a random variable is a function, which allows us to use a more comfortable description
of properties or measurements of a sample, i.e. if B is an interval [a, b] or the property “lottery
player”, then we identify the corresponding event X−1(B) in the σ–algebra F .
Now, we can introduce the expected value, sometimes also called mean, first moment or expecta-
tion:

Definition 1.3 (Expected value or mean).
Consider a probability space (Ω,F , P) and a random variable X defined on that triple. Then, the
expected value E (X) or mean of X is defined as the Lebesgue integral

E (X) :=
∫
Ω

X dP =
∫
Ω

X(ω) dP (ω) (1.3)

whenever the integral exists.

Note that since the integral may not converge absolutely, not all random variables have a finite
expected value, and for some it is not defined at all (e.g., Cauchy distribution).
In order to define the second important number, the covariance, we first introduce the notion of
moments:

Definition 1.4 (Moment).
Consider a probability space (Ω,F , P), a natural number n ∈ N and a random variable X defined
on that triple. Then, the n–th moment is given by

mn := E (Xn) . (1.4)

Hence, the mean is also the first moment. Regarding the covariance, we require the second
moment to describe, how much two random variables in one probability space change together,
i.e. what the nature of their connection and how strong this connection is:

Definition 1.5 (Covariance).
Consider a probability space (Ω,F , P) and two random variables X and Y defined on that triple.
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Then, the covariance Cov (X, Y) is defined as

Cov (X, Y) := E ((X − E (X)) (Y − E (Y))) (1.5)

whenever the second moments of X and Y exist.
If X = Y, then covariance is called variance and we obtain Cov (X, X) = σ2 (X).

Higher moments describe the skewness and curtosis of the probability function P, which can be
interpreted as a measure of deviation from a normal distribution and a measure of deviation from
a symmetric distribution, respectively.
The following notion of a so-called probability density function uses the nice property of a ran-
dom variable to be a transformation into an easily interpretable space. I.e. it describes the relative
likelihood for this random variable to take a given value (evaluated in the image space of the
random variable):

Definition 1.6 (Probability density function).
Consider a probability space (Ω,F , P) and a random variable X : Ω → E defined on that triple,
where the set E equipped with measure µ and E is a σ–algebra of E. Then, any measurable
function f : E → R+

0 , which satisfies

Pr (X ∈ B)

=
∫

X−1(B)

dP

 =
∫
B

f dµ (1.6)

for any measurable set B ∈ E is called a probability density function.

One of the most famous probability density functions induces the so called Gaussian random
variables.

Definition 1.7 (Gaussian (or normal) distribution).
Consider a probability space (Ω,F , P) and a random variable X : Ω → E defined on that triple,
where the set E equipped with measure µ and E is a σ–algebra of E. Suppose that the parameters
µ, σ ∈ R with σ > 0 define the density function

f (x) =
1√
2πσ

exp− (x−µ)2

2σ2 . (1.7)

of the random variable X. Then X is called a Gaussian random variable, also written X ∈
N
(
µ, σ2), and f is called Gaussian distribution.
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Figure 1.4.: Sketch of the Gaussian distribution

Last, we require that the identification methods somehow produce a solution, which converges
towards the true parameter of the system. Here, we solely focus on the concept of mean square
convergence.

Definition 1.8 (Mean square convergence).
Consider a probability space (Ω,F , P) and a sequence of random variables X(N), N ∈ N and
a random variable X, both defined on that triple. Then, we call X(N) to converge to X in mean
square if

E
(
|X|2

)
< ∞,

E
(
|X(N)|2

)
< ∞ for all N ∈ N, and

lim
N→∞

E
(
|X(N)− X|2

)
= 0.

For short, we write l.i.m.
N→∞

X(N) = X.

As this concept is based on distinct properties of the random variables, i.e. of its first and second
moment, it is readily checkable within the identification process.
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1.4. Models

Starting with deterministic and continuous time case, we consider ordinary differential equations:

Definition 1.9 (Ordinary Differential Equation).
An ordinary differential equation in Rnx , nx ∈ N, is given by

d
dt

x(t) = f (t, x(t)) (1.8)

where f : D → Rnx is a continuous function and D is an open subset of R × Rnx .

The solution of (1.8) is a continuously differentiable function x : R → Rnx , which satisfies (1.8).
In general, we will use the following denomination throughout the script:

The independent variable t is referred to as time, although other interpretations are possible.

Instead of d
dt x(t) we will often use the abbreviation ẋ(t).

The function x(t) is called solution or trajectory.

If the function f is independent of t, i.e. ẋ(t) = f (x(t)), then the differential equation is
called autonomous.

An ordinary differential equation typically possesses infinitely many solutions. To obtain a unique
solution, we have to introduce a constraint, the so called initial value constraint. Combined with
the differential equation (1.8), this reveals the so called initial value problem:

Definition 1.10 (Initial Value Problem).
Consider values t0 and x0 ∈ Rnx to be given. Then the initial value problem is to find the solution
satisfying the differential equation

ẋ(t) = f (t, x(t)) (1.8)

and the initial value condition

x(t0) = x0. (1.9)

Here, the time t0 ∈ R is called initial time and the value x0 ∈ Rnx is called initial value. Both
the pair (t0, x0) and equation (1.9) are called initial condition.
Under certain conditions, existence and uniqueness of a solution to the problem from Definition
1.10 can be shown. This is the so called Lipschitz condition
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Definition 1.11 (Lipschitz Condition).
Consider a function f : D → Rnx with D ⊂ R × Rnx . Then f is called Lipschitz in its second
argument, if for each compact set K ⊂ D there exists a constant L > 0 and

∥ f (t, x)− f (t, y)∥ ≤ L∥x − y∥ (1.10)

holds for all t ∈ R and all x, y ∈ Rnx with (t, x), (t, y) ∈ K.

Using this property, we can show the following:

Theorem 1.12 (Existence and Uniqueness).
Consider a differential equation (1.8) with f : D → Rnx and D ⊂ R × Rnx . Moreover,

f is considered to be continuous and Lipschitz continuous in the second argument. Then for

each initial condition (t0, x0) ∈ D, there exists a unique solution x(t; t0, x0) of the initial value

problem (1.8), (1.9). This solution is defined for all t from an open maximal interval of existence

It0,x0 with t0 ∈ It0,x0 .

Here, we like to note that the dynamic reveals a flow of the system at hand, whereas a trajectory is
bound to a specific initial value and input sequence. The following Figure 1.5 illustrates the idea
of flow and trajectory. In this case, the flow is colored to mark its intensity whereas the arrows
point into its direction. The trajectory is evaluated for a specific initial value and „follows“ the
flow accordingly.
Note that at the boundary of the interval of existence It0,x0 the solution ceases to exist. If the
interval is bounded, then there are two possible reasons for that: For one, the solution may diverge,
or secondly the solution converges to a boundary point of D. In the remainder of this script, we
will always assume that the assumptions of Theorem 1.12 are met without explicitly stating it.

Table 1.2.: Advantages and disadvantages of differential equations

Advantage Disadvantage
✓ Allows to model dynamics ✗ May require solvers
✓ Allows validation of properties analyt-

ically
✗ Requires identification

To capture randomness within a model, we can extend ordinary differential equations to so called
stochastic differential equations.
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x1

x2

Figure 1.5.: Sketch of a dynamic flow and a trajectory

Definition 1.13 (Stochastic differential equation).
Consider deterministic functions a, b : R × Rnx → Rnx , a probability space (Ω,F , P) and a
random variable X : R × Ω → Rnx to be given. Then we call

ẋ(t) = a(t, x(t)) + b(t, x(t))X(t, ·) (1.11)

a stochastic differential equation.

Here, the introduction of the random variable X causes possibly multiple solutions to exist. Since
the realization of the random variable X(·, ω) depends on chance, the solution also depends on
chance. In turn, once the realization ω ∈ Ω is fixed, (1.11) is an ordinary differential equation
with a unique solution, i.e. for each realization which is also called a path, there exists one
solution.
Here, we have a more close look at a specific path, the so called Wiener process.

Definition 1.14 (Wiener process).
Consider a probability space (Ω,F , P) and a random variable W : R × Ω → Rnx to be given.
We call W a Wiener process if the following conditions are satisfied:

1. W(t, ·) is a Gaussian random variable with E (W(t, ·)) = 0 and σ2 (W(t, ·)) = t.
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2. For t1 ≥ t0 ≥ 0 the increments W(t1, ·)− W(t0, ·) are Gaussian random variables with
E (W(t1, ·)− W(t0, ·)) = 0 and σ2 (W(t1, ·)− W(t0, ·)) = t1 − t0.

3. For t3 ≥ t2 ≥ t1 ≥ t0 ≥ 0 the increments W(t3, ·)−W(t2, ·) and W(t1, ·)−W(t0, ·) are
Gaussian random variables.
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Figure 1.6.: Different paths of a Wiener process

A path W(t, ω) of W is one of many possible arbitrary functions, which (in the whole) satisfy
the conditions above. Indeed, one can show that these paths are almost surely continuous in t,
i.e. the event A = {ω ∈ Ω | X(t, ω) is continuous in t} exhibits probability Pr (A) = 1, and
almost surely nowhere differentiable.
We like to point out that by condition 3, a wiener process is memory free, and paths could at
any time move upwards and downwards with exactly the same probability, no matter the past
development.

Table 1.3.: Advantages and disadvantages of stochastic processes

Advantage Disadvantage
✓ Allows to model uncertainty ✗ Converges in stochastic sense
✓ Extends ordinary differential equations ✗ Requires extensive simulation

The Wiener process will form the basis of the so called Monte-Carlo method, which we will
introduce and discuss in the upcoming Chapter 5. Yet first, we will start with growth, mechanical
and electric processes in Chapters 2, 3 and 4 respectively.



Part I.

Modeling





CHAPTER 2

GROWTH PROCESSES

Deterministic models cover a range of applications such as growth, production and transport
processes, as well as biological/chemical reactions or the spread of disease or information. These
models can also be used in different areas such as market forecasting or product displacement.
One of the classic systems for modelling growth processes is also called the logistic equation. In
this chapter we will stick to the classical applications and analyse in more detail models with one
or more entities, with and without resource constraints.

2.1. Growth dynamics for one object type

The analysis of growth is called population dynamics in the biological case. Within this section,
we concentrate on one object type and analyze this problem in detail.

2.1.1. From difference to differential equation

Dynamics of objects are discrete in nature: The size of a set of objects is usually measured by the
number of individual objects, which is an natural number. Similarly, measurements are typically
taken at discrete instances in time t1 < t2 < . . .. Consequently, this gives us system of form

Definition 2.1 (Discrete time population dynamics).
Given

∆B(tk) Number of created objects in the time interval [tk, tk+1]

∆D(tk) Number of discreated objects in the time interval [tk, tk+1]

∆M(tk) Number of migrated objects in the time interval [tk, tk+1]
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we call the system

x(tk+1) = x(tk) + ∆B(tk)− ∆D(tk) + ∆M(tk) (2.1)

population dynamics.

Equations of type (2.1) are called difference equations. To be able to apply analytical tools for
ordinary differential equations, we have to modify both the state axes and the time axes to be (in
this case non negative) reals.
To obtain a differential equation from (2.1), we assume that all time instances tk are equally
distributed, i.e. tk+1 − tk =: ∆t for all k ∈ N. Hence, we obtain

x(t + ∆t)− x(t)
∆t

=
∆B(t)

∆t
− ∆D(t)

∆t
+

∆M(t)
∆t

.

Note that ∆B, ∆D and ∆M depend on ∆t, even if this is not explicitly mentioned in our notation.
Letting ∆t → 0, we obtain

Definition 2.2 (Continuous time population dynamics).
Suppose a population dynamics (2.1) to be given. Then we call

ẋ(t) = b(t)− d(t) + m(t). (2.2)

with

b(t) = lim
∆t→0

∆B(t)
∆t

, d(t) = lim
∆t→0

∆D(t)
∆t

and m(t) = lim
∆t→0

∆M(t)
∆t

.

continuous time population dynamics.

Proceeding this way would be a good idea if ∆B, ∆D and ∆M were known. Here, we do not
follow this route but instead deduce b and d from model assumptions directly.

2.1.2. Simple growth model

The most simple growth model is given by the following assumptions:

1. The rate of creation is linearly proportional to the current size of the set of objects:

b(t) = γx(t) for some γ ∈ R
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2. The rate of decreation is linearly proportional to the current size of the set of objects:

d(t) = σx(t) for some σ ∈ R

3. There is no migration:

m(t) ≡ 0

This leads to the following system

Definition 2.3 (Simple growth model).
Given a continuous time population dynamics (2.2) with m(t) ≡ 0, the differential equation

ẋ(t) = λx(t) (2.3)

is called simple growth model where λ = γ − σ represents the growth rate as difference between
birth and death rate. The solutions of (2.3) with initial condition x(t0) = x0 are given by

x(t; t0x0) = x0 expλ(t−t0) .

Note that x(t) denotes the size of the set of objects. Hence, we can only allow for x(t) ≥ 0, and
in particular x0 ≥ 0. Here and in the following, we use the abbreviation R+ = {x ∈ R | x > 0}
and R+

0 = R+ ∪ {0}.
Although this model is very simple, it still describes some growth phenomena pretty well.

Task 2.4 (Population growth worldwide)
Figure 2.1 shows the size of the world population between 1950 and 2010 in billions. Fit a

simple growth model to match the data.

Solution to Task 2.4: A respective solution of (2.3) can be obtained by values x0 = 2.5747
and λ = 0.0172.

Task 2.5 (Population Europe)
Capture the development of the population development in Europe as shown in Figure 2.2

using a simple growth model.
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Figure 2.1.: Growth of the world population and solution of (2.3) for identified parameters

Solution to Task 2.5: The development of the stalling population in Europe cannot be cap-
tured correctly, cf. Figure 2.2.
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Figure 2.2.: Growth of the European population and solution of (2.3) for identified parameters
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This inability arises since for λ > 0 we have that expλt → ∞ as t → ∞ which illustrates the
necessity for capacity bounds.

2.1.3. Logistic growth model

To model such a slowed down growth, we integrate an upper bound C > 0 for the size of the set
of objects in (2.3). C represents a capacity, which in Biology is subject to the available resources
such as food, water etc., in production limiting factors may be machinery, workforce, space, and
in logistics factors such as road capacities and time may reveal restrictions. In particular, we want
to enforce

1. If x < C, then we have g(x) > 0 reflecting availability for growth.

2. If x > C, then we have g(x) < 0 reflecting negative growth.

The simplest function, which exhibits such a behavior, is the linear function g(x) = C − x.
Applying this function, we obtain

Definition 2.6 (Logistic growth).
Consider a continuous time population dynamics (2.2) with capacity C > 0, then

ẋ(t) = λ (C − x(t)) x(t), (2.4)

is also called logistic growth or logistics equation. The explicit solutions of (2.4) with initial
condition x(t0) = x0 are given by

x(t; t0, x0) =
C

1 +
(

C
x0
− 1
)

exp−λC(t−t0)
. (2.5)

Note that the expression λ (C − x) is a nonlinear growth rate.
Based on the solution formula, we could analyze the behavior of the latter. To generalize our
analysis, we first introduce some important terms for differential equations.

Definition 2.7 (Equilibrium).
A point x⋆ ∈ Rnx is called equilibrium (or fixed point) of a differential equation (1.2) if
x(t; t0, x⋆) = x⋆ for all t, t0 ∈ R.

One can easily see that a point x⋆ is an equilibrium if and only if f (t, x⋆) = 0 for all t ∈ R.
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Corollary 2.8 (Equilibrium).
Given the logistics growth model (2.4), x⋆ is an equilibrium if and only if x⋆ = 0 and x+ = C.

Equilibria are of particular interest due to their potential in analyzing the long term behavior of
solutions.

Theorem 2.9 (Equilibrium).
Consider differential equation (1.2) where f is autonomous. Moreover, the solution x(t; t0, x0)

converges to a point x⋆ ∈ Rnx for t → ∞ or t → −∞. Then x⋆ is an equilibrium.

Regarding model (2.4), we can see that solutions x(t; t0, x0) are growing strictly monotone be-
tween the two equilibria, i.e. ẋ(t) > 0 if x(t) ∈ (0, C), and ẋ(t) < 0 if x(t) > C. Since the
solutions in positive time are bounded by the equilibrium solution x(t) = x+ = C and cannot
intersect due to uniqueness, cf. Theorem 1.12, they are monotone and bounded, and therefore
they converge.

Corollary 2.10 (Behavior).
Given the logistics growth model (2.4), we have that all solutions with

x(t0) > 0 converge to x+ = C for t → ∞,

x(t0) ∈ [0, C) converge to 0 for t → −∞, and

x(t0) > C diverge to x(t) → ∞ for t → −∞.

Remark 2.11
As a consequence of Theorem 2.9 we know that equilibria represent all possible limits of solutions

in the autonomous case.

For higher dimensions, monotonicity can be substituted by the following:

Definition 2.12 (Exponential Stability).
Consider a differential equation (1.2).

1. An equilibrium x⋆ ∈ Rnx is called (locally) exponentially stable, if there exists a neighbor-
hood N of x⋆ and parameters λ, θ > 0 such that

∥x(t; t0, x0)− x⋆∥ ≤ θ exp−λ(t−t0) ∥x0 − x⋆∥
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holds for all x0 ∈ N , t0 ∈ R and all t ≥ t0.

2. An equilibrium x⋆ ∈ Rnx is called exponentially unstable, if parameter λ, θ > 0 and a
neighborhood N of x⋆ exist such that within each neighborhood N0 ⊂ N of x⋆ there
exists a point x0 ∈ N0 which satisfies

∥x(t; t0, x0)− x⋆∥ ≥ θ exp−λ(t−t0) ∥x0 − x⋆∥

for all t ≥ t0 for which x(t; t0, x0) ∈ N holds.

3. An equilibrium x⋆ ∈ Rnx is called exponentially antistable, if parameter λ, θ > 0 and a
neighborhood N of x⋆ exist such that for all x0 ∈ N with x0 ̸= x⋆ and all t0 ∈ R the
inequality

∥x(t; t0, x0)− x⋆∥ ≥ θ exp−λ(t−t0) ∥x0 − x⋆∥

for all t ≥ t0 for which x(t; t0, x0) ∈ N holds.

Hence, for t → ∞ and Case 1, all solutions from a neighborhood N of the equilibrium x⋆

converge to the equilibrium x⋆. In Case 3, all solutions move away from x⋆ for growing t, i.e.
convergence is not possible. In Case 2 there exist solutions which start arbitrarily close to x⋆

but move away from it. However, there may exist initial values x0 ̸= x⋆, for which the solution
x(t; t0, x0) converges to x⋆.

Remark 2.13
Note that Cases 1–3 do not describe all possible scenarios. For example, a function β(∥x0 −
x⋆∥, t) may exist, which converges to zero slower than θ exp−λ(t−t0) ∥x0 − x⋆∥ and that instead

of Case 1 the inequality

∥x(t; t0, x0)− x⋆∥ ≤ β(∥x0 − x⋆∥, t)

holds.

The reason for choosing the definition of the (restricted case of) exponential estimates lies in the
simplicity of checking these criteria — at least for the case of autonomous differential equations.

Theorem 2.14 (Exponential Stability).
Consider an equilibrium x⋆ ∈ Rnx of a differential equation (1.2) with autonomous vector field
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f : Rnx → Rnx . Suppose f is continuously differentiable in a neighborhood of x⋆ and that

D f (x⋆) ∈ Rnx×nx represents the Jacobian of f at x⋆. Then the following holds:

1. The equilibrium x⋆ is (locally) exponentially stable if and only if the real parts of all Eigen-

values λi ∈ C of D f (x⋆) are negative.

2. The equilibrium x⋆ is exponentially unstable if and only if there exists one Eigenvalue

λi ∈ C of D f (x⋆) with positive real part.

3. The equilibrium x⋆ is exponentially antistable if and only if the real part of all Eigenvalues

λi ∈ C of D f (x⋆) are positive.

Proofs for these results can be found in the book [2]. The Jacobian D f (x⋆) is also often called
the linearization of (1.2) at x⋆.
Regarding our logistics growth model, we see the following:

Corollary 2.15 (Convergence).
Given the logistics growth model (2.4), we have the equilibria x⋆ = 0 and x+ = C and

D f (x) = λ(C − x)− λx ⇒ D f (x⋆) = λC > 0 and D f (x+) = −λC < 0.

Hence, x⋆ = 0 is exponentially antistable and x+ = C is exponentially stable.

Task 2.16 (Solution of logistics growth model)
Sketch the solution of the logistics growth model (2.4) with C = λ = 1 for initial values

x0 ∈ {0, 0.1, 1, 2}.

Solution to Task 2.16: The solution is plotted in Figure 2.3.

Table 2.1.: Advantages and disadvantages of logistics growth model

Advantage Disadvantage
✓ Allows complete analysis ✗ Limited to one species
✓ Allows in-/decrease and limitation ✗ Unfit for spatial distribution

Continued on next page
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Table 2.1 – continued from previous page

Advantage Disadvantage
✓ Focuses on mass and flow ✗ Unable to specify unit behavior

2.2. Lotka-Volterra model

In this section we extend the model (2.3) to the case of several types of objects. To this end,
we first focus on the case with two objects where the first one represents a supply source for the
second one. The first one is often referred to as pray or supply while the second one is called
predator or production/consumer. The case of limited resources (2.4) can be treated similarly.
To extend our model (2.3) to two types of objects, we denote the set of objects of the first by x1

and of the second by x2. For our model, we make the following assumptions:

1. The set of objects x1 grows according to (2.3) with λ = γ − σ. Here, the rate of creation γ

is constant and the rate of decreation is given by σ = σ̃ + bx2. The rate of decreation con-
sists of a constant term σ̃ ∈ (0, γ) representing the natural decreation, and a proportional
term bx2 representing the absorption by x2. Hence, for x2 = 0 the set of objects x1 grows
exponentially. Here, we set a = γ − σ̃.

2. The set of objects x2 also evolves according to (2.3) with λ = γ − σ. Here, the rate of
decreation σ is constant and the rate of creation γ = γ̃ + dx1 consists of the natural rate
of creation γ̃ ∈ (0, σ) and a proportional term with cofactor d > 0. Hence, the rate of
creation is affine linearly depending on the number of objects x1. For x1 = 0 the set of
objects x2 is dying out as σ > γ̃. Here, we set c = σ − γ̃.

Combined, we obtain the following

Definition 2.17 (Lotka-Volterra model).
The system

ẋ1(t) = ax1(t)− bx1(t)x2(t) (2.6)

ẋ2(t) = −cx2(t) + dx1(t)x2(t)

with parameters a, b, c, d > 0 is called Lotka–Volterra model.
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Figure 2.3.: Solutions of the logistics equation (2.4)

For the analysis of (2.6), we first reduce the number of parameters. To this end, we apply the
coordinate transformations x1 → d

c x1 and x2 → b
a x2, which gives us

ẋ1(t) = ax1(t)(1 − x2(t)) (2.7)

ẋ2(t) = −cx2(t)(1 − x1(t))

Utilizing our approach from the last section, we directly obtain

Corollary 2.18 (Equilibria and convergence).
The equilibria of the Lotka-Volterra model (2.7) are given by x⋆ = (0, 0)⊤ and x+ = (1, 1)⊤

with Jacobian

D f (x⋆) =

(
a(1 − x⋆2) −ax⋆1

cx⋆2 −c(1 − x⋆1)

)
=

(
a 0
0 −c

)
and D f (x+) =

(
0 −a
c 0

)
.

For x⋆ the Eigenvalues are a and −c rendering the point unstable. For x+, the Eigenvalues are

±
√
−ca rendering the point to be neither stable nor unstable.

Task 2.19 (Solution of logistics growth model)
Sketch the solution of the Lotka-Volterra model (2.7) with a = c = 1.
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Solution to Task 2.19: The solution is plotted in Figure 2.4.

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Prey population

P
re

d
a
to

r 
p
o
p
u
la

ti
o
n

Figure 2.4.: Solutions for the Lotka-Volterra model (2.7) with a = c = 1

All solutions are moving along periodic orbits around x+. More formally, we can state the fol-
lowing:

Definition 2.20 (Periodicity).
A solution x(t; t0, x0) is called periodic, if there exists a T > 0 such that

x(t; t0, x0) = x(t + T; t0, x0)

holds for all t ∈ R. The time T is called the period of the solution.

In particular, the solution of an autonomous differential equation is periodic if and only if there
exist two time instances t1 < t2 ∈ R such that x(t1) = x(t2) = xP.

Similar to the logistics growth model, we can extend the Lotka-Volterra model to include limited
resources. To this end, we modify our model assumption 1 as follows:

1’. The set of objects x1 evolves according to (2.3) with λ = γ− σ and there exists a bounding
rate e > 0. Here, the rate of creation γ and the bounding rate e are constant and the rate
of decreation is given by σ = σ̃ + bx2. There only exist bounded resources for x1 and the
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rate of decreation consists of a constant term σ̃ ∈ (0, γ) representing the natural rate of
decreation, and a proportional term representing the absorption by bx2. Hence, for x2 = 0
the set of objects x1 approaches C = a/e with a = γ − σ̃.

Hence, we obtain

Definition 2.21 (Lotka-Volterra model with limited resources).
We call the system

ẋ1(t) = ax1(t)− bx1(t)x2(t)− ex1(t)2 (2.8)

ẋ2(t) = −cx2(t) + dx1(t)x2(t)

with parameters a, b, c, d and e > 0 Lotka-Volterra model with limited resources.

Similar to (2.6), we can apply the coordinate transformations x1 → d
c x1 and x2 → bd

da−ec x2 to
obtain

ẋ1(t) = αx1(t)(1 − x2(t)) + βx1(t)(1 − x1(t)) (2.9)

ẋ2(t) = −cx2(t)(1 − x1(t))

with α = a− ec/d and β = ec/d. Here, we have to be careful that positive x1 and x2 are mapped
on positive values. Since a, b, c, d and e > 0 this is the case if and only if bd

da−ec > 0, i.e. if
da > ec.
For da ≤ ec one can show that the set of objects x2 → 0 for t → ∞. Here, we want to treat the
more interesting case of two coexisting set of objects. Henceforth da > ec, which is a necessary
condition for the respective setting.
In particular, we obtain the following properties, which are also illustrated in Figure 2.5.

Corollary 2.22 (Equilibria and convergence).
Given the Lotka-Volterra model with limited resources (2.9) the equilibria are given by x⋆ =

(0, 0)⊤, x⋆⋆ = ((α + β)/β, 0)⊤ and x+ = (1, 1)⊤. Since only x+ is an element of R+ × R+,

we obtain

D f (x) =

(
α(1 − x2) + β(1 − 2x1) −αx1

cx2 −c(1 − x1)

)
,
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which gives us

D f (x+) =

(
−β −α

c 0

)

and Eigenvalues λ1/2 = − β
2 ±

√
β2

4 − ca rendering x+ to be exponentially stable.
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Figure 2.5.: Solutions for the predator–prey model (2.9) with a = c = 1 and β = 0.5

In principle, the model can be extended to n different types of objects x1 to xn. If we consider
identical model assumptions for all types, where the rate of creation γ depends affine linearly on
the other types, we obtain

Definition 2.23 (Generalized Lotka-Volterra model).
We call the system

ẋi(t) = kixi(t) + b−1
i

n

∑
j=1

aijxi(t)xj(t), i = 1, . . . , n (2.10)

with ki ̸= 0, aii ≤ 0 and bi > 0 generalized Lotka-Volterra model.

Note that models (2.4) and (2.8) are special cases of this model.
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The special case aii = 0 and aij = −aji is called a Volterra ecology. In that case, the matrix
A = (aij) is anti–symmetric, i.e. x⊤Ax = 0 for all x ∈ Rnx and d

dt V(x(t)) = 0. Hence, we
will obtain similar periodic phenomena.

Table 2.2.: Advantages and disadvantages of Lotka-Volterra

Advantage Disadvantage
✓ Allows multiple species ✗ Requires complex analysis
✓ Allows usage of Lyapunov theory ✗ Hinders property validation
✓ Allows periodic solutions



CHAPTER 3

MECHANICAL PROCESSES

In this chapter, we consider mechanical processes, which can be modeled using force and ve-
locities. To this end, we first introduce basic translational and rotational models of elements.
Then, we utilize Newton’s law to develop elementary equations of motion and by that the dif-
ferential equation itself. The approach itself is constructive an — in principle — allows us to
model arbitrarily complex mechanical system at very low mathematical costs. As the approach is
impracticable for complex systems, we consider the continuing method of Lagrange.

3.1. d’Alembert Principle

Within this first section, we introduce an approach known as d’Alembert Principle. It represents
a modularization and combination of mechanical systems. Each of the modules (or elements) is
described by a graphical symbol and a respective equation of motion, which, however, not always
corresponds to a differential equation.
Here, we start by introducing the modules including the respective equations. For such modules,
one distinguishes between two different kinds of motion, translational and rotational. In the
following, we will use the denotation given in Table 3.1.

Variable Meaning Unit

m Mass kg [kilogramm]
h Height m [meter]
g Gravitation m/s2 [meter per second square]
E Energy kg m2/s2 [Joule]

Table 3.1.: Denomination for technical elements and models
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3.1.1. Translational elements

Translational elements are elements of motion, which allow for a movement along a straight line,
i.e. a one–dimensional movement. We subdivide these elements in mass, spring and damping
ones using the denomination displayed in Table 3.2.

Variable Meaning Unit

y Location, dilation m [meter]
v Velocity m/s [meter per second]
a Acceleration m/s2 [meter per second square]
F Force N = kg m/s2 [Newton]

Table 3.2.: Denomination for translational models

Mass element

A mass element consists of a mass m (which is constant in time), a force F applied to this mass
and the velocity v of the mass (both of which can be time dependent). The symbol for a mass
element is depicted in Figure 3.1.

m
F

v

Figure 3.1.: Symbol for a mass element

Utilizing Newton’s second law, the differential equation for the mass element is given by

F(t) = ma(t) = mv̇(t). (3.1)

where force F and velocity v point into the same direction.

If a mass is in motion, then its kinetic energy is given by

Ek(t) =
m
2

v(t)2.

If a mass is caught in a gravity field, then its potential energy is given by

Ep(t) = mgh(t).
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Spring element

The spring (or more generally the elasticity) element is a deformable object, for which the dilation
y is a function of the applied force F (which may be time dependent). The symbol for a mass
element is given in Figure 3.2.

y2y1

F F

y

y2y1

F F

y

Figure 3.2.: Symbols for a spring element

For the ansatz of a linear model we use Hook’s law to describe the spring element. Hence, we
have

sy(t) = F(t) (3.2)

where y(t) = y2(t) − y1(t) is the dilation of the spring and s > 0 the spring constant. By
convention, y2(t) is the point of action in positive direction, and y1(t) for negative direction.

For small dilations, this model describes a real life spring sufficiently well. For more realistic
models, a nonlinear mapping between F(t) and y(t) is applied, which we will not cover here.
Independent from the modeling of this mapping, pure spring elements are an idealization by
themselves. In reality, there exists no spring without mass and damper. Note that for y(t) = 0,
the spring is in a position of rest, hence the dilation can be either positive or negative within this
model.

Similar to mass elements, also spring elements can store potential energy. If equation (3.2) is
supposed to hold, then this energy is given by

Ep(t) =
s
2

y(t)2.

Damper element

A damper or damping element is a mechanical element, which cannot store energy, but instead
converts the received energy into heat and releases the latter. This is referred to as a dissipator.
The symbol for a damper element is given in Figure 3.3.
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F F
v

Figure 3.3.: Symbol for a damper element

Again, we consider the linear model given by

F(t) = dv̇(t), (3.3)

where v(t) is the relative velocity of the body (which corresponds to the piston in the cylinder),
F(t) the attacking force and d > 0 the damping constant. If a force F(t) is applied, then the
velocity dv(t) will be reached. The relative velocity v(t) is computed via v(t) = v+(t)− v−(t),
where v+(t) denotes the velocity of the terminal point in positive direction, and v−(t) the velocity
of the terminal point in negative direction.
This model is also called viscosity model or viscous friction. Other models are given by, e.g., dry

friction or drag/air resistance. In the first case, the force F(t) is increasing for slower velocities,
in the latter the force quadratically depends on the velocity via F(t) = dv(t)|v(t)|. Even more
complex connections arise in the case of stiction, which cannot be modeled by a classical function,
but required hysteresis models instead.

The absorbed energy of a damping element at time t is the product F(t)v(t). Hence, in the time
interval [t0, t1], a damping element absorbs the energy given by the integral over the power, i.e.

Ea =
∫ t1

t0

F(t)v(t)dt.

3.1.2. Rotational elements

Analog to tranlational element, we introduce three elements for rotations. To this end, we use the
denomination displayed in Table 3.3.

Variable Meaning Unit

θ Angle rad [radiant]
ω Angular velocity rad/s [radiant per second]
α Angular acceleration rad/s2 [radiant per second square]
τ Torque Nm [Newton meter]
J Moment of inertia kgm2 [kilogramm meter square]

Table 3.3.: Denomination for rotational models
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The torque describes the force, which is applied to a rotating body: Consider F(t) = (F1(t), F2(t), 0)
to be a directed force and a body, which is rotating around the x3 axis. The force is applied at the
body at point x(t) = (x1(t), x2(t), 0) as illustrated in Figure 3.4. The vector x can be interpreted

x1

x2

x3

θ

x

F

F

Figure 3.4.: Schematic illustration of torque

as a leverage of the body. The resulting torque is given by

τ(t) = x1(t)F2(t)− x2(t)F1(t) = ∥x(t)∥∥F(t)∥ sin(θ(t)), (3.4)

where θ(t) is the angle between x(t) and F(t). Again, the sign is important. Positive direction
must be chosen such that both expressions in (3.4) coincide.
Note that the force F(t) is now a vector in a coordinate system. In contrast to translational
models, the information regarding direction is contained in F(t), hence we can compute contact
forces without having to take care of directions.

Mass element

The mass element for rotations consists of a mass, which is rotating around an axis. The respective
formula is given by

τ(t) = Jα(t) = Jω̇(t) (3.5)

where J represents the moment of inertia, which is given by the mass of the object and its distri-
bution around the rotation axis. Figure 3.5 give the symbol for the rotational mass element.
For a rotating body B ⊂ R3 with mass m and density ρ : B → R+

0 we have

J =
∫

B
r(x)2ρ(x) dx



36

J

Figure 3.5.: Schematic illustration of rotational mass element

where r(x) is the distance of x to the rotation axis.

In special cases, a closed formula is known. A rotating point mass with mass m and distance r to
the rotation axis possesses the moment of inertia

J = mr2.

Note that the latter can be generalized to the Parallel Axis Theorem (also know as Steiner’s
Theorem).

Spring/torsion element

The spring and the following damper element are completely analog to their translational coun-
terparts. Similarly, we consider the linear models only. For the rotational spring element the
equation reads

sθ(t) = τ(t). (3.6)

Figure 3.6 gives the respective symbol.

Figure 3.6.: Symbols for a rotational spring element

Damper element

For the damper element, the following equation

dα(t) = τ(t) (3.7)
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holds and the symbol of the damper element is given in 3.7

Figure 3.7.: Symbol for a rotational damper element

3.1.3. Combining elements

Based on the previous elements, the Ansatz of the d’Alembert method is to build more complex
system by the following procedure:

1. Model the mechanical system using mass, spring and damping elements

2. Prepare the respective equations of motion

3. Formulate the connecting laws / contact forces

The basis for this Ansatz is given by Newton’s 3rd Law actio = reactio: In each mass, the sum
of forces is zero.

Theorem 3.1 (Newton’s 3rd law).
Consider a mechanical element. Let Fk for k = 1, . . . , kmax be the internal forces and F be the

external force applied to the considered element. Then we have

F =
kmax

∑
k=1

Fk.

Note that the direction of the force needs to be taken into account using a respective sign.
Here, we will exemplary discuss how this procedure works using a pendulum model.

Task 3.2 (Inverted pendulum)
We utilize rotational elements to generate a model of a pendulum and impose the following

assumptions:

The pendulum is a point mass m, which is mounted on a massless rod of length ℓ.

There is no friction.



38

Let x(t) = (x1(t), x2(t))⊤ be the endpoint of the pendulum. The rotation axis is located

at xA, and we set xA = 0. As usual, the coordinates x1, x2 are increasing rightwards and

upwards respectively. A schematic sketch of the model is given in Figure 3.8.

(x1(t), x2(t))

F = (0,−mg)⊤

xA

ℓ

θ(t)

x2 x1

Figure 3.8.: Schematic drawing of a pendulum

Solution to Task 3.2: The point x(t) can be calculated from the length ℓ and the angle θ(t)
via

x(t) = (ℓ sin(θ(t)),−ℓ cos(θ(t)))⊤ .

Due to earth’s gravitation, the force F acting in x(t) is given by F = (0,−mg)⊤. Utilizing
(3.4) we obtain the torque

τF(t) = x1(t) · (−mg) + x2(t) · 0 = −mgx1(t) = −mgℓ sin(θ(t)).
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Moreover, for the mass element we obtain from equation (3.5)

τJ(t) = Jθ̈(t) = mℓ2θ̈(t).

Setting τF = τJ , we get

mℓ2θ̈(t) = −mgℓ sin(θ(t)),

which gives a second order differential equation. Via ω(t) = θ̇(t), we arrive at the system
of first order differential equations

θ̇(t) = ω(t)

ω̇(t) = −g
ℓ

sin(θ(t)).

Combining properties of d’Alembert’s method, we see the contents of Table 3.4.

Table 3.4.: Advantages and disadvantages of d’Alembert’s method

Advantage Disadvantage
✓ Allows to connect base elements ✗ Requires connecting points
✓ Based on simple principle ✗ Complex for large problems
✓ Easily accessible ✗ No direct meaning of energy

3.2. Lagrangian formalism

Within the last section we discussed a method to combine basic translational and rotational mod-
els with their forces. For large systems, this procedure is rather complex. The reason lies in the
number of connection laws and contact forces for many points, each resulting in a single equation.
This leads to large equation systems, which are difficult to solve.
An alternative is the so called energy based method using Lagrange–Equations. The idea of the
Lagrange–Equations utilizes the energy of a system. We restrict ourselves to the case of a system
with n points of mass mi at locations ri = (xi, yi, zi)

⊤, i = 1, . . . , n. The kinetic energy of this
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system is given by

Ek =
n

∑
i=1

mi

2
∥vi∥2.

The mechanical structure with its J connections induces constraints, which can be formalized as
follows:

Definition 3.3 (Constraints).
Consider a system with n points of mass mi at locations ri = (xi, yi, zi)

⊤, i = 1, . . . , n. Then we
denote the constraints of the system by

Cn(r1, . . . , rn, t) = 0 ∀n = 1, . . . , J, (3.8)

where ri = (xi, yi, zi)
⊤ ∈ R3 marks the positions of the points of mass.

Task 3.4 (Pendulum constraints)
Consider the pendulum from Task 3.2 fixed at the origin with point mass m at point

r(t) = (x(t), y(t), z(t))⊤ of length ℓ, which is swinging in the x − y plain. Formulate

the constraints (3.8) for this system.

Solution to Task 3.4: All possible positions of r(t) are the given by

C1 = ∥r∥2 − ℓ2 and C2(r) = z.

Let us now assume that we can parameterize the manifold of compatible configurations, then we
get the following:

Definition 3.5 (Generalized coordinates).
Consider a system with constraints (3.8). Then we call the set of coordinates q(t) =

(q1(t), . . . , q(t)) ∈ Q ⊂ Rnq generalized coordinates if they satisfy

M =
{
(r1(q(t), t), . . . , rn(q(t), t))⊤ | q(t) ∈ Q

}
=
{
(r1, . . . , rn)

⊤ | Cj(r1, . . . , rn, t) = 0 ∀j = 1, . . . , J
}
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for continuously differentiable functions ri(q, t) and

∂r
∂qk

(q(t), t), k = 1, . . . , nq are linearly independent.

Task 3.6 (Pendulum generalized coordinates)
Design a set of generalized coordinates for the pendulum example from Task 3.2

Solution to Task 3.6: For the pendulum we have

r(q(t)) =

 ℓ sin(q(t))
−ℓ cos(q(t))

0


with q(t) = q1(t) ∈ Q = (−ε, 2π) ⊂ R for arbitrary ε > 0. Note that q describes the angle
of the pendulum, which is denoted by θ in the previous section.

Now we can describe our system using the generalized coordinates q(t). Via the chain rule, we
can also express the velocity in terms of q(t). We obtain

Definition 3.7 (Generalized velocities).
Consider a system with generalized coordinates q(t) = (q1(t), . . . , q(t)) ∈ Q ⊂ Rnq . Then we
call the set q̇1, . . . , q̇nq given via

vi(t) =
d
dt

ri(q(t), t) =
J

∑
j=1

∂ri

∂qj
(q(t), t)q̇j(t) +

∂ri

∂t
(q(t), t), i = 1, . . . , n. (3.9)

generalized velocities.

Note that due to linear independence of the partial derivatives, this equation system (3.9) can be
solved for q̇(t).

Task 3.8 (Pendulum generalized velocities)
Derive the generalized velocities 3.9 for the pendulum example of Task 3.2.
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Solution to Task 3.8: For the pendulum we have

v(t) =

ℓ cos(q(t))
ℓ sin(q(t))

0

 q̇(t).

Now, we can write the kinetic energy using q and q̇ via

Definition 3.9 (Generalized kinetic energy).
Consider a system with generalized coordinates and velocities. Then we call

Ek =
n

∑
i=1

mi

2
∥vi∥2 =

n

∑
i=1

mi

2

∥∥∥∥∥ J

∑
j=1

∂ri

∂qj
(q(t), t)q̇j(t) +

∂ri

∂t
(q(t), t)

∥∥∥∥∥
2

=: T (q(t), q̇(t), t)

kinetic energy, which is also denoted by T (q(t), q̇(t), t).

Task 3.10 (Pendulum generalized kinetic energy)
Given the pendulum example from Task 3.2 compute the generalized kinetic energy.

Solution to Task 3.10: For the pendulum we have

T (q(t), q̇(t), t) =
m
2
ℓ2q̇(t)2

as generalized kinetic energy.

For forces Fi(t) ∈ R3, i = 1, . . . , n, which are applied at the ith point of mass, we define the the
so called generalized forces via

Definition 3.11 (Generalized forces).
Consider a system with generalized coordinates. Then we call the set

fk(t) =
n

∑
i=1

〈
Fi(t),

∂ri

∂qk
(q(t), t)

〉
, k = 1, . . . , nq.
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generalized forces. Furthermore, we call a mechanical system conservative, if there exists a
function W(r(q(t), t), t) such that

Fi(t) = −∂W
∂ri

(r(q(t), t), t) =: −∇iW(r1(q(t), t), . . . , rn(q(t), t), t)

holds.

The definition of generalized forces directly leads to the potential energy of a system.

Definition 3.12 (Generalized potential energy).
Consider a system with generalized forces. We call W generalized potential energy if f (t) =

−∇qW(q(t), t) holds for W(q(t), t) = W(r(q(t), t), t).

Since the generalized potential energy is defined via derivatives, one typically adds a suitable
constant to arrive at minq W(q(t), t) = 0.

Task 3.13 (Pendulum generlized potential energy)
Compute the generalized forces / potential energy for the pendulum from Task 3.2.

Solution to Task 3.13: Utilizing the pendulum example without friction, the force F(t) =

(0,−mg, 0)⊤ applies to the pendulum, which can be written as f (t) = −∇qW(q(t), t)
with W(q(t), t) = mgy(t). Inserting r(q(t)) = (ℓ sin(q(t)),−ℓ cos(q(t)), 0)⊤, we have
W(q(t), t) = −mgℓ cos(q(t)). To satisfy minq W(q(t), t) = 0, we add mgℓ to the expres-
sion and obtain

W(q(t), t) = −mgℓ cos(q(t)) + mgℓ

as generalized potential energy.

Having defined the notation above, we are now ready to define the Lagrangian:

Definition 3.14 (Lagrangian).
Consider a conservative mechanical system. Then we call the function

L(q(t), q̇(t), t) = T (q(t), q̇(t), t)−W(q(t), t) (3.10)

the Lagrangian of the system.
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Utilizing the Lagrangian, we can derive the equations of motion of the system:

Theorem 3.15 (Lagrangian equation).
Consider a conservative mechanical system. Then the so called Lagrangian Equation

d
dt

(
∂L
∂q̇k

(q(t), q̇(t), t)
)
− ∂L

∂qk
(q(t), q̇(t), t) = 0, k = 1, . . . , nq (3.11)

holds.

Note that this equation can be obtained from the physical condition that the functional

I(q(t)) =
∫ t1

t0

L(q(t), q̇(t), t) dt

is minimal along solutions q. Setting g(α) = I(q + αz) for an arbitrary differentiable function z
with z(t0) = z(t1) = 0, then we have ġ(0) = 0. After some computations we obtain

ġ(0) =
nq

∑
k=1

∫ t1

t0

(
d
dt

(
∂L
∂q̇k

(q(t), q̇(t), t)
)
− ∂L

∂qk
(q(t), q̇(t), t)

)
z(t) dt

revealing (3.11).

Task 3.16 (Pendulum Lagrangian)
Considering the pendulum from Task 3.2, derive the Lagrangian equation of motion.

Solution to Task 3.16: Considering the pendulum without friction, we obtain

L(q(t), q̇(t), t) =
m
2
ℓ2q̇(t)2 + mgℓ cos(q(t))− mgℓ.

Hence, we have

∂L
∂q̇

(q(t), q̇(t), t) = mℓ2q̇(t)

∂L
∂q

(q(t), q̇(t), t) = −mgℓ sin(q(t)).
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Hence, we obtain the equations of motion via (3.11)

0 =
d
dt

(
mℓ2q̇(t)

)
+ mgℓ sin(q(t))

= mℓ2q̈(t) + mgℓ sin(q(t)).

Since ℓ > 0 and m > 0, the latter simplifies to

0 = ℓq̈(t) + g sin(q(t)),

which corresponds to our earlier results with q = θ.

Remark 3.17
The Lagrangian approach we presented here is given for conservative systems, i.e. systems with-

out loss of energy, e.g., via friction. To integrate such effects gives us a so called dissipative

system. Within the modeling, a dissipation rate needs to be defined and translated into a general-

ized friction force. Then, we can add this force to the right hand side of the Lagrangian Equation

(3.11) and solve the latter.

Combining properties of the Lagrangian approach, we see the contents of Table 3.5.

Table 3.5.: Advantages and disadvantages of the Lagrangian/Hamiltonian approach

Advantage Disadvantage
✓ Based on energy ✗ Requires generalized coordinates
✓ Simple derivation of motion ✗ Requires indepth theory
✓ Possible automation of approach ✗ Reveals second order system





CHAPTER 4

ELECTRICAL PROCESSES

In contrast to mechanical processes, electrical ones do not work on force and velocities, but in-
stead on voltage and currents. To model such processes, we first introduce the base components of
generation, transmission, transformation, storage, and utilization of electrical energy. Thereafter,
we introduce the concept of bond graphs. The latter can also be seen as an overarching method
to model both electrical networks as well as mechanical applications.

4.1. Network elements

Bond graphs are a graphical representation used to model the dynamic behavior of physical sys-
tems. They are particularly useful for systems involving multiple energy domains, such as me-
chanical, electrical, hydraulic, and thermal systems. Bond graphs employ a set of standardized
symbols to represent the components and interactions within these systems, focusing on the flow
of energy between elements. The basis of the latter is a so called graph or network.

Definition 4.1 (Network/graph).
Consider a set of V = {v1, . . . vnV} where nV ∈ N is the maximal entry of V . Moreover,
suppose E = V × V where nE ∈ N is the maximal entry of E . Then we call V the set of

vertexes, E the set of edges connecting the vertexes, and N = (V , E) a network or graph.
The network/graph is called directed if the set of edges is defined via start and ending points,
otherwise it is called undirected.
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Task 4.2
Consider a system given by V = {A, B, C, D, E, F}, which is complete, i.e. for each pair of

distinct vertexes there exists an edge connecting the latter. Draw the respective network.

Solution to Task 4.2: Within a complete network for each pair of vertexes there exists an
edge. The network is displayed in Figure 4.1.

ab

ac

adae

af bc

bdbe

bf

cdce

cf

de

dfef

A B

C

DE

F

Figure 4.1.: Graph of network from Task 4.2

Within bond graphs, a certain denomination is used for both vertexes, edges and connectivity.

Definition 4.3 (Undirected bond graph).
An undirected bond graph is an undirected graph where

vertices called nodes denote subsystems, components or basic elements, and

edges called (power) bonds represent the instantaneous energy transfer between nodes,

connection points of a node are called power ports, and

nodes are called multiport if they exhibit more than one power port.

Task 4.4
Consider the bond graph in Figure 4.2. Identify the nodes and their multiport properties.
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source v1 v2

v3

v4

v5

source

v6 source

Figure 4.2.: Example of a bond graph

Solution to Task 4.4: The set of nodes is given by V = {v1, v2, v3, v4, v5, v6} where v3, v4

are one-ports, v1, v6 are two-ports while v5 is a three-port and v2 is a four-port.

The notion of power bonds and power ports indicates that bond graphs deal with the power trans-
fer within graphs. In general, power p equals the product of two physical quantities, the so called
flow f and effort e, i.e.

p = e × f .

By convention, in the horizon case of a power bond effort is always written on top and flow below
a power bond. In the vertical case, effort is written on the left and flow on the right, cf. Figure 4.3.

e
f

e f

Figure 4.3.: Convention for annotation of power bonds

Remark 4.5
As a consequence of using flow and effort, a bond graph is an energy based representation
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whereas a block diagram is a signal based representation. As a consequence, bond graphs can

be applied in multiple domains (simultaneously).

Within the literature, two analogies for effort and flow between disciplines are known (but con-
tradict one another). Here, we apply the so called direct analogy stating the possibilities outlined
in Table 4.1.

Table 4.1.: Direct analogy for power

Effort Flow Momentum Displacement

Translational mechanics force velocity momentum displacement

Rotational mechanics moment velocity momentum angle

Electromagnetics voltage current linkage flux charge

force flux rate flux

Hydraulics pressure volume flow momentum volume

Thermodynamics temperature entropy flow entropy

Chemics potential molar flow mass

While power exchange can be represented by undirected edges, evaluation of models in nodes
require signs for the latter. In bond graphs, the following is used:

Definition 4.6 (Directed bond graph).
Suppose a bond graph to be given. Then it is called directed if a half arrow is used for each power
bond to indicate the positive reference direction of the flow f across the bond.

By convention, the half arrow is added to the side where the flow variable is annotated, cf. Fig-
ure 4.4.

4.2. Bond graph junctions

Physical processes suggest the introduction of classes for basic multiport elements
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e
f

e f

Figure 4.4.: Convention for annotation of power bonds

sources and sinks

storages

dissipators

power couplers and transducers, and

power nodes for distribution.

Definition 4.7 (Junction structure).
Suppose a bond graph to be given. If the nodes transfer or distribute power instantaneously only,
the it is called junction structure.

In particular, we consider the following junctions characterizing equal effort (0-junction) or equal
flow (1-junction). More formally:

Definition 4.8 (0-junction).
A 0-junction is a multiport characterized by

e1 = e2 = . . . = en (4.1)
n

∑
k=1

fk = 0 (4.2)

where n is the cardinality of the multiport.

The latter corresponds to Kirchhoff’s current law in electrics or the description of links in me-
chanics.
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Definition 4.9 (1-junction).
A multiport is called 1-junction if it satisfies

n

∑
k=1

ek = 0 (4.3)

f1 = f2 = . . . = fn (4.4)

where n is the cardinality of the multiport.

Among others, the 1-junction corresponds to Kirchhoff’s voltage law or d’Alembert’s principle
on velocities. Based on the power connections established by the power ports, information can
be fed to other nodes, e.g. into a block diagram for measurement or control. Such ports do not
handle power but signals instead, which gives us:

Definition 4.10 (Signal port).
A port is called signal port if it provides information regarding the flows and efforts connected to
a node.

These signal ports allow us to connect the information structure of a block diagram to the power
structure of the bond graph. In diagrams, such signals are indicated by full headed arrows, cf.
Figures 4.5a and 4.5b.

0
e1

e2

e3

e

(a) Example of a 0-junction

0
f1

f2

f3

f

(b) Example of a 1-junction

Figure 4.5.: Example of 0- and 1-junctions

We can also combine 0- and 1-junctions to a more complex structure. Between such elements,
the bonds can be used to define an internal structure.
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Definition 4.11 (Internal bond).
A bond is called internal bond if it connects a 0- or 1-junction to another 0- or 1-junction.

Note that it does not make sense to combine two 0-junction or two 1-junctions as they can simply
be summarized into a single node. Hence, internal bonds need only be considered between 0- and
1-junctions. Together, an internal structure arises:

Definition 4.12 (Simple junction structure).
A bond graph is called to be of simple junction structure if each node is either a 0- or a 1-junction.

The simple junction structure is also called Kirchhoff structure. Everything outside of such a
simple junction structure is called external, also the connecting bond.

Definition 4.13 (External bond).
If a bond connects a 0- or 1-junction to a power port of an element that does not belong to the
simple junction structure, then it is called external bond.

4.3. Bond graph modeling

On the outside of simple junction structures, different elements can be used.

Definition 4.14 (Two-port transformer).
A node is called two-port transformer if it satisfies the conditions

e1(t) = m(·)× e2(t) (4.5)

m(·)× f1(t) = f2(t) (4.6)

where m(·) ∈ R+ is either a constant, a function of time or a function of another power variable.

Note that by definition, the modulus may arise from both efforts and flows, yet with inverted
impact. In diagrams, we apply the notation shown in Figure 4.6, which also indicates whether
m(·) enters the node as a constant of function.
Within Figure 4.6, MTF stands for modulated transformer.
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TF

:

m
1 2

MTF
1

m(·)

2

Figure 4.6.: Representation of a two-port transformer

Task 4.15
Consider a mechanical gear with radii r1 and r2. Define the two-port transformer describing

the gear.

Solution to Task 4.15: The tangial velocity define the flow equation

f1 = r1 × ω1 = r2 × ω2 = f2

where ω1, ω2 are the rotation speeds of gears. Hence, for the forces we obtain

r2 · e1 = r1 × e2

where the efforts e1, e2 correspond to the moments of the gears.

For a transformer, we saw that inputs are transformed to the same outputs, i.e. flows to flows and
efforts to efforts. Conversely, a gyrator can be applied.

Definition 4.16 (Two-port gyrator).
We call a node two-port gyrator if it satisfied the conditions

e1 = r × f2 (4.7)

e2 = r × f1 (4.8)

with r ∈ R+ representing the gyrator ratio being either a constant, a function of time or a function
of another power variable.

Similar to the transformer, the gyrator is depicted as given in Figure 4.7 where again MGY stands
for modulated gyrator.
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GY
:

r
1 2

MGY
1

r(·)

2

Figure 4.7.: Representation of a two-port gyrator

Task 4.17
Consider an electrical coil on a magnetic core with n turns satisfying Faraday’s Law

u = n × dΦ
dt

for flux Φ and voltage u. Identify the magnetomotive force and draw the two-port gyrator.

Solution to Task 4.17: Due to power balance with current i

u × i = V × dΦ
dt

(4.9)

we obtain

V = n × i

and the gyrator in Figure 4.8.

GY

:

n
u
i

V
dΦ/dt

Figure 4.8.: Two-port gyrator according to Task 4.17

Combined, these elements give rise to the so called general junction structure.

Definition 4.18 (General junction structure).
We call a bond graph to be of general junction structure if each node is either a 0- or 1-junction
or an (M)TF or (M)GY.

A special case of the latter is the so called weighted junction structure, which does not interchange
outputs but instead works like an amplifier/transformator.
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Definition 4.19 (Weighted junction structure).
A bond graph with only 0-, 1- of (M)TF nodes is called to be of weighted junction structure.

Within the scope of the lecture, we consider everything outside a general junction structure to be
sources and sinks or simply disturbances. In terms of bond graphs, we define

Definition 4.20 (Environmental elements).
Nodes are called environmental elements if they do not belong to a general junction structure.

Among these elements are storages and resistors, which we consider next.

Definition 4.21 (1-port C energy storage).
A node is called 1-port C energy storage if there exists a bijective function ΦC : R → R such
that the node satisfies

q(t) = ΦC(e(t)) (4.10)

for the effort e : R → R and generalized displacement q : R → R with time t ∈ R+.

Definition 4.22 (1-port I energy storage).
A node is called 1-port I energy storage if there exists a bijective function ΦL : R → R such that
the node satisfies

p(t) = ΦL( f (t)) (4.11)

for the flow f : R → R and generalized momentum p : R → R with time t ∈ R+.

Table 4.2.: C and I energy storages

C storage I storage

Translational mechanics Spring Rigid body

Rotational mechanics Torsion spring Flywheel

Continued on next page
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Table 4.2 – continued from previous page

C storage I storage

Electromagnetics Capacitor Coil

Ferromagnetic -

Hydraulics Fluid compressibility Fluid inertia

Thermodynamics Lump of material -

To illustrate such a network and its translation to a bond graph, we consider the following simple
example.

Definition 4.23 (1-port resistor).
We call an node 1-port resistor if there exists one of the bijective functions ΦR : R → R or
ΦG : R → R such that the node satisfies one of the conditions

e(t) = ΦR( f (t)) (4.12)

f (t) = ΦG(e(t)) (4.13)

for effort e : R → R and flow f : R → R with time t ∈ R+.

Task 4.24
Consider the mechatronic system shown in Figure 4.9. Derive the bond graph modeling the

system and the respective equations.

Solution to Task 4.24: The bond graph is given in Figure 4.10. We directly obtain the
following:

For the modulated gyrator we have

τ = Φ × iA

uA = Φ × ω.
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RA

uRA

iRA
LA

uLA

iLA

ME RF uRF

iRF

Cable drum

mJm, Rm

τload, ω

Figure 4.9.: Schematic of a DC machine moving a (hoisting) drum roll

where iA, uA are the current and voltage on the inner loop and τ is the torque of the
motor with its angular velocity ω.

For the left 0-junction E represents the voltage supplied by the source. We obtain the
current running over the source is given by

i = iRA + iRF

with iA = iLA = iRA .

Continuing from the left, the 1-junction reveals

−E + uRA + uLA + uA = 0.

Similarly, the upper 1-junction reveals that the voltage of the source E is given by uRF .

Last, the right 1-junction supplies the sum of all torques

τ + τload − τRm − Jmω̇ = 0.

Combined, we can summarize the advantages and disadvantages of Bond graphs as given in
Table 4.3.
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Figure 4.10.: Bond graph of DC driven drum roll

Table 4.3.: Advantages and disadvantages of bond graphs

Advantage Disadvantage
✓ Allows multiple connections ✗ Requires network structure
✓ Allows power and information bonds ✗ Requires unification
✓ Unifies modeling





CHAPTER 5

STOCHASTIC PROCESSES

Financial processes are a rather young field of research, which in contrast to the topics considered
so far is almoste purely stochastic.
Here, we will focus on safeguards for unwanted future development, e.g. in development of
exchange rates, and particularly discuss the simplest form known as the European Option. Our
aim is to compute the value of such a derivative at a given time instant. Since the value depends
on the unknown future development of the stocks and rates, we require a respective model of
these.
To this end, we apply stochastic differential equations, cf. Definition 1.13. For each initial
condition, such equations exhibit a number of possible solutions, which depend on chance. The
idea of these stochastic differential equations is to approximate possible future developments such
that known statistical values from past data (such as expected value or variance) are best modeled.
Within this chapter, we first derive a respective model for the most simple task in finance, the
assessment of options, and derive models for the stock development. Last, we show a practical
method for computing prices of options.

5.1. Options

An option is a contract, which provides the holder with the possibility (but not the obligation) to
sell or buy a share at a future time instant for a fixed price. The price is referred to as strike price,
the selling option is also called a put and the buying option is called a call.
Here, we consider the European option. The difference to other options is that the strike time is
apriori fixed. The task now is the following:

What is the value of the option itself at time before the strike time?
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Definition 5.1 (Terms of options).
Given an option, we call T strike time and denote the (known) base value of a share at a certain
time t ∈ [0, T] by S. We denote the desired value of the option by V(t, S). Furthermore, let K
the fixed strike price.

Now, we directly obtain

Corollary 5.2 (Value of an option).
The value of a call option is given by

V(T, S) =

S(T)− K if S(T) > K

0 else
= max{S(T)− K, 0} =: (S(T)− K)+.

and of a put option by

V(T, S) =

K − S(T) if K > S(T)

0 else
= max{K − S(T), 0} =: (K − S(T))+.

To compute the value of the option at any time t < T we require

(1) a rule for computing V(t, S) from V(T, S(T)) if S(T) is known, and

(2) an estimate of the base value S(T) at time T depending on the base value S at time t.

If (1) and (2) are available, then we can estimate V(T, S(T)) via (2) and apply the rule (1) to this
estimate.

We focus on the first requirement first. To this end, we suppose the following to hold:

Assumption 5.3 (Arbitrage freeness)
Given a financial market, no benefit from a risk free fund can be drawn. For a risk free fund, we
call r > 0 interest rate modeling its development.

The respective postulate assumes that if a product is traded at two markets at different prices,
then the prices would converge immediately, rendering arbitrage to be impossible. Although this
doesn’t hold in practice, it is an accepted assumption.
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Definition 5.4 (Risk free payoff).
Given a risk free interest rate r > 0 and an option V(·, S), then the payoff is given by

B(T) = expr(T−t) V(t, S(t)) (5.1)

for any t < T.

If we consider the value V(T, S(T)) to be known and if V(t, S(t)) > exp−r(T−t) V(T, S(T)),
then we could sell the option immediately and invest the payoff risk free. Hence, we obtain

B(T) = expr(T−t) V(t, S(t)) > V(T, S(T))

and our risk free profit is given by B(T) − V(T, S(T)) > 0. Vice versa, if V(t, S(t)) <

exp−r(T−t) V(T, S(T)), then we could buy that option for B(t) = V(t, S(t)) and at strike time
get the return

B(T) = V(T, S(T)) > expr(T−t) V(t, S(t)).

Now the risk free profit is given by B(T) − expr(T−t) V(t, S(t)) > 0. Since the postulate of
no-arbitrage bounds from Assumption 5.3 excludes risk free profits, the following holds:

Theorem 5.5 (Value of option).
Suppose Assumption 5.3 to hold and an option V(·, S) to be given. Then the value of the option

is given by

V(t, S(t)) = exp−r(T−t) V(T, S(T)).

Focusing on the second requirement, we model the typical stock development using a stochastic
differential equation of form (1.11)

ẋ(t) = a(t, x(t)) + b(t, x(t))X(t, ·)

and set S(T) = x(T; t, S(t)). Note that S(T) is not a fixed value but a random variable. The
value of V(T, S(T)) can be estimated via the expected value E (V(T, x(T; t, S(t)))). Hence, we
have
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Corollary 5.6 (Value of option).
Given an option V(·, S) we suppose that Assumption 5.3 holds. Then the value of the option is

given by

V(t, S(t)) = exp−r(T−t) E (V(T, x(T; t, S(t)))) , (5.2)

for any t ≤ T.

In order to retrieve a dynamics such as (1.11), simplest stochastic differential equation model
satisfying these requirements is given by

Definition 5.7 (Geometric Brownian motion).
The solutions of the stochastic differential equation

dx(t) = µx(t)dt + σx(t)dWt. (5.3)

are called geometric Brownian motion

The minimal requirements for modeling a system (5.3) are the parameters trend µ ∈ R and the
spreading σ > 0. The first parameter µ gives the general direction of the stock development,
either up, down or leveling, while the second parameter σ corresponds to the variance/jitter of
the stock development around the general direction. In finance, the parameters µ and σ are also
termed rate of return and volatility.
Due and despite its simplicity, the model (5.3) is the basis of many applications regarding the
modeling of stocks. In particular, we can show

Theorem 5.8 (Uniqueness Brownian motion).
Consider the stochastic differential equation (5.3), then its unique solution is given by

x(t; t0, x0) = x0 exp(µ− 1
2 σ2)t+σW(t) . (5.4)

Remark 5.9
For σ = 0 we reobtain the solution of the linear differential equation ẋ(t) = µx(t) and its

solution x(t; t0, x0) = x0 expµ(t−t0).

Based on the latter, we can conclude
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Corollary 5.10 (Expected value and variance).
For the Brownian motion we can set e(t) = E (x(t; t0, x0)) and obtain

ė(t) = µe(t), e(0) = E (x0) = x0 for (5.5)

revealing

E (x(t; t0, x0)) = x0 expµ(t−t0) . (5.6)

Moreover, we obtain

σ2 (x(t; t0, x0)) = x2
0 exp2µ(t−t0)

(
expσ2(t−t0) −1

)
. (5.7)

The parameters trend µ and spreading σ are typically estimated using past values. This shows,
that this type of model is not entirely suited for generating prediction of stock developments. For
risk neutral assessment, we set µ = r.

5.2. Monte–Carlo method

Having characterized the Brownian motion as a solution to the stochastic differential equation (5.3),
we now use the Wiener process to describe the derivative of the random variable.
Since the Wiener process is a stochastic function, the solutions computed based on a Wiener
process are again stochastic functions. Hence, each state xi in x = (x1, x2, . . . , xN)

⊤ is a real
valued stochastic process connected to one Wiener process W(t, ω). To mark this connection,
for any given path W(t, ω) we denote the solution by x(t; t0, x0, ω).
The Monte–Carlo method is a direct and very versatile method to compute the expected value of
complex expressions. Here, we apply it to compute the expected value E (V(T, x(T; t, S(t)))) to
assess the value of an option V(t, S(t)) via (5.2). Similar to the name giving casino in Monaco,
the Monte–Carlo method utilizes a vast number of random experiments. Instead of hoping for
a prize, we calculate an estimate of the expected value based on the results of the random ex-
periments. The random experiments themselves are performed by computers according to the
following algorithm, and the solution is therefore a numerical and not an analytic one.

Algorithm 5.11 (Monte–Carlo Method)
Given a stochastic differential equation (5.3), an initial time t, a strike time T, a risk free interest
rate r and the function V(T, S(T)) from Section 5.1.
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1. Use a random number generator to create (approximations of) paths W(t, ωk), k =

1, 2, . . . , N of a Wiener process.

2. Apply a numerical method to solve the stochastic differential equation to (approximatively)
obtain x(τ; t, S(t, ωk)). Set S̃k(T) = x(T; t, S(t, ωk)).

3. Compute the approximation of the expected value via

Ẽ(V(T, S(T))) =
1
N

N

∑
k=1

V(T, S̃k(T)).

4. Evaluate the estimate Ṽ(t, S(t)) = Ẽ(V(T, S(T))) exp−r(T−t).

Note that for the simple model (5.3), we can utilize the solution formula (5.4) instead of a numer-
ical approximation. To this end, not the entire paths of the Wiener process need to be simulated,
only the values W(T, ωk) as N (0, T)–distributed random variables.

Task 5.12 (Monte-Carlo application)
Consider model (5.3)

dx(t) = µx(t)dt + σx(t)dWt

with µ = 0.08 and σ = 0.2, initial time t = 0 and initial value S = 80, and strike price

K = 100 at time T = 1 and suppose the risk free interest rate to be r = 0.08. The payoff is

given by

B = max{0, x(T; t, S)− K}.

Apply the Monte-Carlo method to approximate V(t, S(t)).

Solution to Task 5.12: Applying Algorithm 5.11, we generate 2000 sample paths of the
Wiener process in the first step.
In the second step, we compute the related 2000 solutions of (5.3), cf. Figure 5.1a for a few of
these solutions. The large number of samples allows us to approximate the probability density
function via a histogram of solutions at strike time T, which is displayed in Figure 5.1b.
Based on these solutions, we can compute the expected value of the underlying stock at
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strike time T in the third step. Applying (5.2), we obtain the discounted value of the option
displayed in Figure 5.2.
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Figure 5.1.: Numerical results from Task 5.12
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The figure illustrates nicely that for large numbers of samples, the solution generated by the
Monte–Carlo method converges. Yet, we also observe that quite a large number of samples is
required to reduce the fluctuations in the discounted expected value.

To conclude the chapter, we summarize properties of the Monte-Carlo approach to solve stochas-
tic differential equations in Table 5.1.

Table 5.1.: Advantages and disadvantages of Monte-Carlo

Advantage Disadvantage
✓ Easy to understand ✗ Exhibits slow convergence
✓ Allows to consider complex processes ✗ Computes S(t) for fixed time only
✓ Allows to vary interest rate



Part II.

Identification





CHAPTER 6

STRUCTURE OF THE IDENTIFICATION PROCESS

Within the Chapter 1, we introduced the notions from stochastic analysis, which we require to
study the modeling and identification process. Within the current chapter, we will first discuss the
general design sequence of a system identification, which is also called an estimator. Thereafter,
we focus on the properties which we are looking for in an estimator. Exemplarily, we will check
these properties for a simple electric circuit example. Assessing these estimators will show that
there is a clear need for an in deep analysis of properties of estimators.

6.1. Basic design of estimators

As outlined in Chapter 1, every identification consists of the following series of basic steps:

1. Collect information on the system

2. Select a model to represent the system

3. Choose an optimization criterion

4. Fit the model parameters to the measurements accordingly

5. Validate the computed model

Now, we aim to look a bit deeper into each of these steps.

Step 1: Gathering information

In order to identify a process, we first need to build a model of that part of the system, which
we are interested in. To this end, we need to gather information about the process. This step



72

can be done either by observing natural fluctuations, but it is by far more efficient to set up
dedicated experiments that actively excite the system via known inputs. While a good example
of the first are default fluctuations in demand for a supply chain, the latter can be interpreted as a
stress test of a supply chain by uncommon and/or extreme demands. Additionally, the controlled
second approach allows for optimization of information gathering goals, such as minimum cost
and time, measurement accuracy over a certain bandwidth or other possible aims. Note that the
quality of the total identification process may heavily depend on these choices.

Step 2: Selecting the model structure

The model structure is the most variable part of the identification. It not only depends on the
problem of identification itself, but may be subject to the further use of the model. For example,
an approximation of the elasticity of a wheel via a PDE may give a good dynamical model. Yet,
if the model is to be used in a feedback loop, the required computing time to evaluate the model
is larger than the sampling time of the loop. Hence, a coarser (or worse) model is necessary for
the subsequent task. Keeping this in mind, we distinguish the following:

Parametric vs. nonparametric models

In a parametric model, the system is described by a small number of characteristic quantities.
These quantities are called parameters of the model. Regarding our simple electrical circuit ex-
ample, the expected value is one parameter of the model, the variance the second one. An alter-
native example is given by the transfer function, e.g. of a filter, which is described by its poles
and zeros.
A nonparametric model is given by measurements of a system function at a large number of
points. Reviewing the transfer function example, a description via an impulse response at a large
number of points is such a characterization.
Note that it is usually simpler to create a nonparametric model than a parametric one because
the modeler needs less knowledge about the system itself in the first case. Yet, insight into
the problem and concentration of information in a few characteristics is more substantial for
parametric models and make the problem simulation faster.

White box vs. black box models

In a white box model, the internal functioning of the system is – at least to some degree – un-
derstood. In particular, skills of the experimenter as well as connections between components
such as physical laws can be used, whose availability and applicability depend on such an insight.
Here, a loudspeaker illustrates the need for extensive understanding of mechanical, electrical and
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acoustical phenomena in order to derive an appropriate model.
In contrast to the white box idea of using insight into the system, the black box approach uses a
brute force modeling. To this end, a mathematical model is proposed, which allows the descrip-
tion of any observed input and output measurements, but may not even be connected to the real
system. Regarding a loudspeaker, a high order transfer function may be used as such a model.
Again, the choice depends on the further aim. While the white box idea provides a better insight
into the working principles of the system, the black box model may be sufficient for simulation-
s/predictions. Note that it is typically a good idea to include as much knowledge as possible
during modeling, yet that may not always be easy to accomplish. Analyzing a stable system
for example, it is not simple to express this information if polynomial coefficients are used as
parameters of the model.

Linear vs. nonlinear models

In almost all cases, real life applications are nonlinear. Unfortunately, theory of nonlinear systems
is quite involved and may be difficult to understand for a user unfamiliar with this theory. A
nonlinear approach describes the system over its complete operating range and also covers rare
and unusual phenomena.
Linear systems, on the other hand, are (almost) completely understood, nice to handle and can
be evaluated quickly. Unfortunately, as stated above, real life is typically nonlinear. Therefore,
linear systems commonly represent approximations of nonlinear systems within some region –
assuming the region can be linearized. Within such a so called operating region, the linear part of
the system can be regarded as dominant, i.e. the nonlinear part can be neglected without changing
the behavior of the system.
Similar to the other choices, the scope of the problem is relevant to make an appropriate choice.
For example, a nonlinear model is needed to describe the distortion of an amplifier, but a linear
model is sufficient to represent its transfer characteristics if the operating range is small enough.

Linear-in-parameter vs. nonlinear-in-parameter models

The last choice has to be made between linear and nonlinear influence of parameters of the model.
A model is called linear-in-parameter if there exists a linear relation between these parameters and
the error that is minimized. Note that linear-in-parameters does not imply a linear model. For
example, e = y − (au2 + bu + c) is linear in a, b and c, but the model is nonlinear. Likewise,
e = y − (a + bjω)/(c + djω)u is a linear model, but it is nonlinear-in-parameter in c and d.
The impact of this choice can be seen, e.g., for the least square estimator. If the model is linear-
in-parameter, then the minimization problem of the least squares can be solved analytically, and
does not require an iterative optimization method. Hence, the complexity of a linear-in-parameter
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model is much lower.

Step 3: Choose optimization criterion

After choosing a model, it must be matched to the available measurements of the process. To
this end, one typically introduces a criterion, which measures the quality of fit, i.e. the distance
between the computed and the measured values. Note that since the criterion determines the
stochastic properties of the estimator, the choice of this criterion is important for the outcome of
the identification process. Regarding our simple resistor example, there are several choices which
lead to estimators with different properties.
The cost criterion can be chosen arbitrarily. While its design typically resides on adhoc intuitive
insight, there exists a more systematic approach based on stochastic arguments to obtain such a
criterion.

Remark 6.1
There exist tests on the cost criterion to check – even before deriving the estimator – if the resulting

estimator can be consistent. These are necessary conditions, which are outside the scope of this

lecture.

Step 4: Fitting model parameters

In the ensuing step of fitting the parameters, the design work is done and the computations start.
Within this step, numerical or symbolic methods are applied to solve the minimization problem
arising from the cost criterion in Step 3 subject to the model chosen in Step 2 with respect to the
measurement derived in Step 1. Although this step seems to be the essential one, we can already
see that the most of the work is the design. This is due to the fact that nowadays, computing
power is cheap and there exist a wide area of methods to solve certain problems. The actual art is
to design the problem such that it is easily solvable but satisfies the constraints, which bound the
model in its further use.

Step 5: Validating obtained model

In the final step, the validity of the obtained model shall be tested. Here, the following question
are essential:

Does the model describe the available data properly?

Is the model or are parts of it not well designed or flawed?
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Note that, as mentioned before, the model with the smallest error is not always the preferred
one in practice. Instead, a simpler model may be better suited if it describes the system within
user-specified error bounds.
Within the validation process, errors should be separated into different classes such as un-modeled
linear dynamics or nonlinearity distortions. Such information shall allow further improvements
of the model if necessary. During the validation, the application should be kept in mind, i.e.
conditions similar to reality are to be used. Note that extrapolation should be avoided as the
errors of extrapolation increase drastically if many measurements are used, which is the typical
case for estimator design.

Now that we have seen the general structure of an identification process, we are now interested in
properties such an estimator shall offer.

6.2. Properties of estimators

Here, we start of with the claim that a good estimation of a system should exhibit the same
characteristics as the system itself, i.e. the same probability density function. Since the probabil-
ity density function completely defines the properties of a system, such an estimation would do
this as well. Unfortunately, without additional conditions it is very hard to show the respective
convergence in distribution. But certain properties of the expectation value are sufficient to guar-
antee mean square convergence, cf. Definition 1.8, which is in turn sufficient for convergence in
distribution — the property we like to have.
Within the following, we utilize the assumptions regularly imposed in the literature:

Assumption 6.2 (Noise)
The measurements are disturbed by additive random variables, i.e.

y(k) = y0(k) + Xy(k) (6.1)

with the properties that

each random variable has zero mean and variance σ2
y ,

each random variable is independently and identically distributed (iid),

each random variable exhibits a symmetric distribution, and

the random variables are mutually independent.
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Hence, our first condition for an estimator is that it reflects an identical expectation value.

Definition 6.3 (Unbiased estimator).
Suppose a probability space (Ω,F , P), a measurable space E with σ–algebra E of E and an
estimator (random variable) θ̂ : Ω → E for the parameter θ ∈ E to be given. If

E
(
θ̂
)
= θ ∀θ ∈ E (6.2)

holds true, then we call the estimator θ̂ unbiased. If

lim
N→∞

E
(
θ̂(N)

)
= θ ∀θ ∈ E (6.3)

holds, then we call the estimator θ̂ asymptotically unbiased. Otherwise, it is called biased.

Note that, if the estimator is unbiased, its mean converges towards the mean of the model or
model parameters. Yet, since we design the model to represent only a certain part of reality, the
model is typically not exact. Hence, the „ideal“ situation is not realistic and we have to think
about generalizations. One possibility is to suppose that we evaluate the estimator in a noiseless
situation to obtain an approximation. Then, these reference values are compared to results with
noise. The final step is to eliminate the influence of the disturbance such that the estimator
converges to its reference.
Unfortunately, it is very difficult if not impossible to find the expected value by analytical means.
And for some probability density functions, the expected value does not exist. Moreover, we
may face the problem that while the expected values are identical, i.e. the estimator is unbiased
according to Definition 6.3, the probability density functions are very different and coincide only
in the expected value. If such an estimator is used, the outcome of a system may be very different
from the real one. To avoid such a problem, we introduce the concept of consistency:

Definition 6.4 (Weak and strong consistency).
Suppose an estimator θ̂ and parameters θ to be given. If θ̂ converges in probability to θ, i.e.

p.lim
N→∞

θ̂(N) = θ, (6.4)

then the estimator θ̂ is called weakly consistent.
If θ̂ converges almost surely to θ, i.e.

a.s.lim
N→∞

θ̂(N) = θ, (6.5)
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then the estimator θ̂ is called strongly consistent.

The advantage of this concept is that we can prove consistency much easier than unbiasedness. If
both limits exist, then the limit operator may be interchanged with a continuous function

p.lim f (x) = f (p.lim(x))

and hence the consistency idea exhibits nice calculation properties.
Apart from unbiasedness and consistency, we are also interested in obtaining an estimator, which
shows minimal errors only. In particular, we want to minimize the scatter range of the estimator
around its limiting value. That gives us the concept of efficiency:

Definition 6.5 (Efficiency).
Suppose an unbiased estimator θ̂ of parameter θ to be given. If for any unbiased estimator θ̂1 of
parameter θ the inequality

Cov
(
θ̂, θ̂
)
≤ Cov

(
θ̂1, θ̂1

)
(6.6)

holds, then the estimator θ̂ is called efficient.

Since we can rely on a finite number of noisy measurements only, it is clear that there are limits
on the accuracy and precision that can be reached by the estimator. The connection between
measurements and accuracy is given by the so called Cramer-Rao rule:

Theorem 6.6 (Cramer-Rao rule).
Consider a probability space (Ω,F , P) and a random variable X : Ω → E defined on that

triple, where the set E equipped with measure µ and E is a σ–algebra of E. Let f (z, θ) be the

probability density function of the measurements z ∈ RN. Assume that f (z, θ) and its first and

second derivatives w.r.t. θ exist for all θ and that the boundaries of the domain of f (z, θ) w.r.t.

z are independent of θ. Then, the Cramer–Rao lower bound on the mean square error of any

estimator Ĝ(θ̂(z)) of the function G(θ) ∈ Cr is

MSE
(
Ĝ(θ̂(z))

)
≥
(

∂G(θ)

∂θ
+

∂bG

∂θ

)
Fi (θ)+

(
∂G(θ)

∂θ
+

∂bG

∂θ

)H

+ bgbH
g (6.7)

where bG denotes the expected value bias given by

bG := E
(
Ĝ(θ̂(z))

)
− G(θ)
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and Fi (θ) represents the Fisher information matrix of the parameters θ

Fi (θ) := E

((
∂ ln f (z, θ)

∂θ

)⊤ (∂ ln f (z, θ)

∂θ

))
= −E

(
∂2 ln f (z, θ)

∂θ2

)
.

Remark 6.7
We like to stress that the Cramer–Rao rule requires knowledge of the true parameter θ, which may

not be at hand. An approximation can still be calculated by replacing θ in (6.7) by its estimated

value θ̂. Similarly, the probability density function f (z, θ) can be approximated using available

measurements z only.

The Cramer–Rao rule gives us a very simple way to check efficiency:

Corollary 6.8 (Efficiency).
If a given estimator θ̂ reaches the Cramer-Rao bound (6.7), then it is efficient.

Task 6.9
Consider the electric circuit shown in Figure 6.1 for the resistor model given by Ohm’s law

R = u/i. (6.8)

Check whether the estimator

R̂EV(N) =

1
N

N
∑

k=1
u(k)

1
N

N
∑

k=1
i(k)

(6.9)

(6.10)

is unbiased, consistent and efficient.
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Figure 6.1.: Measurement of a resistor

Solution to Task 6.9:
Unbiasedness: Using the model (6.1) within formula (6.9) we directly see

E
(
θ̂EV
)
= lim

N→∞
θ̂EV(N) = lim

N→∞

1
N

N
∑

k=1
u(k)

1
N

N
∑

k=1
i(k)

= lim
N→∞

1
N

N
∑

k=1
u0 + Xu(k)

1
N

N
∑

k=1
i0 + Xi(k)

= lim
N→∞

u0 +
1
N

N
∑

k=1
Xu(k)

i0 + 1
N

N
∑

k=1
Xi(k)

=

u0 + lim
N→∞

1
N

N
∑

k=1
Xu(k)

i0 + lim
N→∞

1
N

N
∑

k=1
Xi(k)

.

Now, we can apply the zero mean and iid property of Xu and Xi from our standing Assump-
tion 6.2, that is

E (Xu) = lim
N→∞

1
N

N

∑
k=1

Xu(k) = 0, E (Xi) = lim
N→∞

1
N

N

∑
k=1

Xi(k) = 0. (6.11)

Hence, we obtain

E
(
θ̂EV
)
=

u0 +

=0︷ ︸︸ ︷
lim

N→∞

1
N

N

∑
k=1

Xu(k)

i0 + lim
N→∞

1
N

N

∑
k=1

Xi(k)︸ ︷︷ ︸
=0

=
u0

i0
= R0 (6.12)

which shows that the error-in-variable estimator is unbiased.
Consistency: Note that we have already done these computations during the computation of
the expected values since we have been using the concept of convergence with probability 1,
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which is a stronger concept than convergence in probability. In particular, we have

p.lim
N→∞

θ̂EV = p.lim
N→∞

1
N

N
∑

k=1
u(k)

1
N

N
∑

k=1
i(k)

=

p.lim
N→∞

1
N

N
∑

k=1
u0 + Xu(k)

p.lim
N→∞

1
N

N
∑

k=1
i0 + Xi(k)

=
u0

i0
= R0.

Hence, θ̂EV is a weakly consistent estimator.
Efficiency: In order to analyze efficiency , we need to calculate the second moment of it.
Regarding the variance of θ̂EV = REV, we apply Definition 1.5, that is

σ2 (θ̂EV
)
= E

((
θ̂EV − E

(
θ̂EV
))2
)

.

To compute this value, we reconsider θ̂EV and — since we are interested in the second mo-
ment only — neglect all second order contributions within such as X2

i or XuXi in this term,
i.e.

θ̂EV =

u0 +
1
N

N
∑

k=1
Xu(k)

i0 + 1
N

N
∑

k=1
Xi(k)

=

u0 +
1
N

N
∑

k=1
Xu(k)

i0 + 1
N

N
∑

k=1
Xi(k)

·
i0 − 1

N

N
∑

k=1
Xi(k)

i0 − 1
N

N
∑

k=1
Xi(k)

neglect 2nd order
≈

u0i0 +
i0
N

N
∑

k=1
Xu(k)− u0

N

N
∑

k=1
Xi(k)

i2
0

=
u0

i0
+

1
i0N

N

∑
k=1

Xu(k)−
u0

i2
0N

N

∑
k=1

Xi(k)

= R0

(
1 +

1
N

N

∑
k=1

Xu(k)
u0

− 1
N

N

∑
k=1

Xi(k)
i0

)
.

Hence, we obtain

σ2 (θ̂EV
)
= E

((
θ̂EV − R0

)2
)
= E

(R0

(
1
N

N

∑
k=1

Xu(k)
u0

− 1
N

N

∑
k=1

Xi(k)
i0

))2


mutually ind.
= E

(
R2

0
N2

N

∑
k=1

Xu(k)2

u2
0

+
R2

0
N2

N

∑
k=1

Xi(k)2

i2
0

)
linearity
=

R2
0

N2

(
E

(
N

∑
k=1

Xu(k)2

u2
0

)
+ E

(
N

∑
k=1

Xi(k)2

i2
0

))
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=
R2

0
N2

(
σ2 (Xu)

u2
0

+
σ2 (Xi)

i2
0

)
=

R2
0

N2

(
σ2

u

u2
0
+

σ2
i

i2
0

)

To conclude, we obtain that the error–in–variable estimator θ̂EV approximate the true value of
the parameter and is therefore unbiased. We also found that the error–in–variable estimator
converges, yet it is not efficient.

6.3. Practical differences of estimators

In practice, also other estimators such as

R̂SA(N) =
1
N

N

∑
k=1

u(k)
i(k)

(6.13)

R̂LS(N) = argmin
R∈R

N

∑
k=1

(R · i(k)− u(k))2 (6.14)

may be used. To illustrate the difference, we suppose that two sets of measurements u(k), i(k)
with k = 1, 2, . . . , N are given, cf. Figure 6.2.
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(a) Group A of measurements
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(b) Group B of measurements

Figure 6.2.: Measurement values for two groups

Utilizing these estimation formulas, we can compute the estimated resistances as displayed in
Figure 6.3. From this figure, we can make several observations:

1. All estimators have large variations for small values of N, and – except for R̂SA from group
A – show the intuitively expected behavior: for a large number of data points the influence
of noise should be eliminated due to the averaging effect.

2. Asymptotic values of the estimators depend on the averaging technique. This shows that
the two additional methods converge to a wrong value. Hence, even an infinite amount of
measurements does not guarantee that the exact value is found.
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Figure 6.3.: Estimated resistances from measurement groups with R̂SA in blue, R̂EV in red and R̂LS in
green.

3. R̂SA from group A behaves very strangely. Instead of converging to a fixed value, it jumps
irregularly up and down.

These observations indicate that estimators need to be checked regarding their applicability. This
allows us to make a sound selection before running expensive experiments.
Continuing a practical approach, we plot approximations of the probability density functions
based on the data, cf. Figure 6.4.
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(a) Observed probability density functions for group A
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(b) Observed probability density functions for group B

Figure 6.4.: Observed probability density functions for groups. From left to right N = 1000, N = 10000
and N = 100000 with R̂SA in blue, R̂EV in red and R̂LS in green.

From this figure, we observe the following:
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1. For small values of N, the estimates are widely scattered. As the number of processed
measurements increases, the probability density function becomes more concentrated.

2. The estimates R̂LS are less scattered than R̂EV and R̂SA, and odd behavior for R̂SA in group
A appears again. The distribution of this estimate does not contract to a single value for
growing values of N for group A, while it does for group B.

3. The distributions are concentrated around different values.

There seems to be a problem with the measurements of group A, which was observed via R̂SA.
In order to quantify the scattering of estimates, in particular of R̂SA, the standard deviation can
be calculated, cf. Figure 6.5.
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(b) Observed standard deviation for group B

Figure 6.5.: Observed standard deviation for groups. From left to right N = 1000, N = 10000 and
N = 100000 with R̂SA in blue, R̂EV in red and R̂LS in green.

Here, we observe that the standard deviation decreases monotonically with N – except for R̂SA

of group A. Moreover, the decrease is proportional to 1/
√

N, which is the rule of thumb for the
uncertainty on an averaged quantity obtained from independent measurements. Additionally, the
uncertainty depends on the estimator.
Regarding the strange behavior of R̂SA of group A, we reconsider the measurement data displayed
in Figure 6.2 and compute respective histograms, cf. Figure 6.6.
Due to possibly occurring zero values for the current in group A, we obtain a drastic increase in
the estimation using the simple approach. This is due to a division by (almost) zero. In group B,
such a case does not exist.

Seeing that simply applying estimators is not the best of ideas and may lead to unexpected results,
the following Table 6.1 summarizes advantages and disadvantages of theoretically considering
properties of estimators before applying these to problems.



84

−0.5 0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

Current

#
 R

e
a

li
z
a

ti
o

n

(a) Histogram for i(·) for group A

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
0

200

400

600

800

1000

1200

Current

#
 R

e
a

li
z
a

ti
o

n

(b) Histogram for i(·) for group B

Figure 6.6.: Comparison of histograms for the current i(·)

Table 6.1.: Advantages and disadvantages of estimation

Advantages Disadvantages
✓ Allows to guarantee unbiasedness ✗ May be computable for specific case
✓ Verifies consistency ✗ Not transferable in general
✓ Checks for efficiency ✗ Requires convergence concepts



CHAPTER 7

LEAST SQUARE ESTIMATION

Within the last chapter, we considered the process of identification and properties of estimators,
which we would like to have. In this chapter, we pursue a systematic approach to the parameter
estimation problem to design an estimator, which satisfies these properties. In particular, we
ask what criterion should be used to match the model to the data. To answer this question, we
use a statistical approach to select a criterion to measure the quality of the resulting fit. After
defining the problem at hand, we discuss two estimators here, the least square and the weighted
least square estimator. Note that it is also possible to use other estimator types such as the least
absolute values.

7.1. Problem definition

To be rigorous in design, we consider a class of problems that can be defined via inputs and
outputs. Note that such systems cover all models we considered in the previous chapters.

Definition 7.1 (Input-output model).
Given a function g : U × Θ → Y we call

y0(k, θ) = g (u0(k), θ) (7.1)

input-output system where k ∈ N0 represents the measurement index, y0(k) ∈ Y = Rny the
output, u(k) ∈ U = Rnu the input and θ ∈ Θ = Rnθ the vector of true parameters.

The aim is to estimate the parameters θ from noisy observations. To this end, we assume that the
output is separated into a deterministic and a probabilistic part y0(·) and Xy(·).
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Assumption 7.2
Given an input output model, noise disturbances only occur within the output observations

y(k, Xy) = y0(k) + Xy(k) (7.2)

where y(k, Xy) and y0(k) represent the modeled and nominal output and Xy(k) denotes the
random output variable.

To achieve the described goal, we minimize the errors between simulated and measured values.

Definition 7.3 (Error variable).
Consider an input-output system g : U × Θ → Y to be given and suppose Assumption 7.2 to
hold. Then we call

e(k, θ) = zk − y0(k, θ) (7.3)

error where zk denotes the measured (real) output of the system and y0(k, θ) denotes the simu-
lated output.

The quality of a fit can then be expressed via a cost criterion. One such criterion is given by the
so called nonlinear least squares (NLS), which is derived from the minimization of the sum of
squared values:

Definition 7.4 (Least Square estimator).
The least square estimator θ̂NLS(N) is given by

θ̂NLS(N) = argmin
θ

JNLS(N, θ), with JNLS(N, θ) :=
1
2

N

∑
k=1

e2(k, θ). (7.4)

Remark 7.5
Alternatively, one may also use the sum of absolute values

θ̂NLA(N) = argmin
θ

JNLA(N, θ), with JNLA(N, θ) :=
1
2

N

∑
k=1

|e(k, θ)| (7.5)

Since the choice of the cost function we used here is arbitrary, the result only optimal in the
sense of this error. Still, least square estimators (7.4) are among the most popular ones, which
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is also motivated by numerical aspects: The quadratic nature can be exploited which reveal that
the necessary first order conditions for an optimal are also sufficient. We like to mention that
the nonlinear least absolute values (7.5) are less sensitive to outliers in the data and may for this
reason be interesting in certain applications as well.
As we have seen in Section 6.2, even within the class of least squares different estimators can
be designed which lead to results with different properties. In context of an optimal outcome
with respect to the properties presented in Chapter 6, it is important to see where the noise enters
into the raw data. Thereafter, a cost function should be selected that explicitly accounts for these
errors.

7.2. Linear least square

If the model is chosen to be linear-in-parameter θ, equations (7.1) and (7.3) simplify to

Definition 7.6 (Linear-in-parameter input-output system).
Let g : U × Θ → Y define an input-output system. If additionally

y0(θ) = K (u0) θ (7.6)

holds with input/output matrix K (u) ∈ RN×nθ , input vector u0 ∈ RN and output vector y0 ∈
RN, then it is called linear-in-parameter input-output system.

Hence, the error can be rewritten as

e(θ) = z − K (u0) θ (7.7)

where z ∈ RN represents the vector of measurements. The quality criterion JNLS(N, θ) reduces
to a linear one given by

JLS(N, θ) :=
1
2

e(θ)⊤e(θ) =
1
2
(z − K (u0) θ)⊤ (z − K (u0) θ)

=
1
2

N

∑
k=1

(zk − K (u0(k)) θ)2 . (7.8)

Hence, we obtain the following:
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Definition 7.7 (Linear least square estimation problem).
Consider a linear-in-parameter model (7.6) and the linear error function (7.7). Then we call

θ̂LS(N) = argmin
θ

JLS(N, θ) (7.9)

with JLS(N, θ) according to (7.8) a linear least square estimator.

Since JLS is quadratic, we can compute the minimizer of this loss function explicitly via

∂JLS(N, θ)

∂θ
= 0.

This gives us

0 =
∂JLS(N, θ)

∂θ
= e(θ)⊤

∂e(θ)
∂θ

= e(θ)⊤(−K (u0)) = −K (u0)
⊤ e(θ).

Hence, we have to solve the equation

−K (u0)
⊤ (z − K (u0) θ) = 0

for θ which reveals the solution

θ̂LS(N) = θ =
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ z.

Concluding, we have shown the following:

Theorem 7.8 (Solution of linear least square estimator).
The solution to the linear least square estimation problem (7.9)

θ̂LS(N) = argmin
θ

JLS(N, θ) with JLS(N, θ) =
1
2
(z − K (u0) θ)⊤ (z − K (u0) θ)

is given by

θ̂LS(N) =
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ z. (7.10)

We like to note that one typically does not compute the least square estimator via formula (7.10),
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but instead solves the linear equation(
K (u0)

⊤ K (u0)
)

θ̂LS(N) = K (u0)
⊤ z

and avoids inverting the matrix K (u0)
⊤ K (u0).

Remark 7.9
Unfortunately, the matrix K (u0)

⊤ K (u0) causes numerical instability since eigenvalues are

raised by the power of two. There are, however, ways to compute the solution of the linear least

square estimation problem (7.9) by other, more stable algorithms such as the QR decomposition.

In order to generate the matrix K, one has to reformulate the model of the problem (7.6) combined
for the available inputs and outputs u(k) and y(k), k = 1, . . . , N.

Task 7.10
Consider the model

y0 = θ,

which is independent from the input. Compute the least square estimator for this model.

Solution to Task 7.10: Combining all available outputs y(k), k = 1, . . . , N this reads

y0(1) = θ

...

y0(N) = θ

and reveals the matrix

K =


1
...
1

 .

Using formula (7.10) we obtain the estimator

θ̂LS(N) =
(

K⊤K
)−1

K⊤z
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=

(1, . . . , 1)


1
...
1




−1

(1, . . . , 1) z

= (N)−1 (1, . . . , 1) z =
1
N

N

∑
k=1

z(k).

The result of Task 7.10 is the average. The result for exemplary model

z = θ with θ = 1 + 0.2Xy,

where Xy is normally independently distributed with mean 0 and standard deviation 1, i.e. Xy ∈
N (0, 1) and θ ∈ N (1, 0.2) is displayed in Figure 7.1 considering 100 measurements.
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Figure 7.1.: Sample measurements and estimation for Example 7.10

Task 7.11
Consider the model

y = u1θ1 + u2
2θ2

and compute the respective least square estimator.
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Solution to Task 7.11: We can combine inputs and outputs to obtain

y(1) = u1(1)θ1 + u2
2(1)θ2

...

y(N) = u1(N)θ1 + u2
2(N)θ2.

Hence, the linear-in-parameter input-output system reads

y0 = K (u0) θ

with

y0 =


y(1)

...
y(N)

 , u0 =



u1(1)
u2(1)

...
u1(N)

u2(N)


, and K (u0) =


u1(1) u2

2(1)
...

...
u1(N) u2

2(N)

 .

Now, we can apply formula (7.10) to obtain the estimator

θ̂LS(N) =
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ z

=




u1(1) u2
2(1)

...
...

u1(N) u2
2(N)


⊤

u1(1) u2
2(1)

...
...

u1(N) u2
2(N)




−1
u1(1) u2

2(1)
...

...
u1(N) u2

2(N)


⊤

z

=


(

u1(1) . . . u1(N)

u2
2(1) . . . u2

2(N)

)
u1(1) u2

2(1)
...

...
u1(N) u2

2(N)




−1(
u1(1) . . . u1(N)

u2
2(1) . . . u2

2(N)

)
z

=


N
∑

k=1
u2

1(k)
N
∑

k=1
u1(k)u2

2(k)

N
∑

k=1
u1(k)u2

2(k)
N
∑

k=1
u4

2(k)


−1

N
∑

k=1
u1(k)zk

N
∑

k=1
u2

2(k)zk

 .

The estimator can be computed by solving the two–dimensional linear equation

A · θ̂LS(N) = b
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with

A =


N
∑

k=1
u2

1(k)
N
∑

k=1
u1(k)u2

2(k)

N
∑

k=1
u1(k)u2

2(k)
N
∑

k=1
u4

2(k)

 and b =


N
∑

k=1
u1(k)zk

N
∑

k=1
u2

2(k)zk

 .

To illustrate the result, we chose N inputs

u1(k) = 1 +
k

N − 1
,

u2(k) = 2 +
10k

N − 1
,

which gives us u0 and K (u0). Then, we generated measurements of the form

z = K (u0) θ

with

θ1 = 1 + 2Xy,1

θ2 = 2 + 1Xy,2

where Xy,1, Xy,2 are normally independently distributed with mean 0 and standard deviation 1,
i.e. θ1 ∈ N (1, 2) and θ2 ∈ N (2, 1). Considering 100 such measurements, we obtain the result
displayed in Figure 7.2.
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Figure 7.2.: Sample measurements and estimation for Task 7.11
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7.3. Properties of the linear least square estimator

Note that we did not formulate any assumptions on the behavior of the noise Xy to compute
formula (7.10), but instead calculated it directly from the measurements and the model without
bothering about the noise behavior. However, in order to make statements about the properties of
the estimator, it is necessary to give some specifications on the noise behavior.
The expected value of the estimator θ̂LS regarding model outputs, i.e. by considering z = y(Xy),
can be computed via

E
(
θ̂LS
) (7.10)

= E
((

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ y(Xy)

)
(7.2)
=
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ E
(
y0 + Xy

)
=
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ y0 +
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ E
(
Xy
)

(7.6)
=
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ K (u0) θ +
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ E
(
Xy
)

= θ +
(

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ E
(
Xy
)

.

Now, in order for the linear least square estimator to be unbiased, we require E
(
Xy
)
= 0.

Corollary 7.12 (Unbiasedness of the linear least square estimator).
Consider a linear least square estimator as defined in Definition 7.7. If the probabilistic part of

the output satisfies E
(
Xy
)
= 0, then the least square estimator is unbiased.

The second interesting characteristic is the covariance matrix of the estimator θ̂LS. Here, we see
the following:

Cov
(
θ̂LS, θ̂LS

)
= E

((
θ̂LS − E

(
θ̂LS
)) (

θ̂LS − E
(
θ̂LS
))⊤)

= E

(((
K (u0)

⊤ K (u0)
)−1

K (u0)
⊤ E

(
Xy
))((

K (u0)
⊤ K (u0)

)−1
K (u0)

⊤ E
(
Xy
))⊤

)

=

((
K (u0)

⊤ K (u0)
)−1

K (u0)
⊤
)

E
(

XyX⊤
y

)((
K (u0)

⊤ K (u0)
)−1

K (u0)
⊤
)⊤

=

((
K (u0)

⊤ K (u0)
)−1

K (u0)
⊤
)

Cov
(
Xy, Xy

) ((
K (u0)

⊤ K (u0)
)−1

K (u0)
⊤
)⊤

Similar to Corollary 7.12, we can make the following conclusion regarding the covariance matrix
of the estimator θ̂LS.
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Corollary 7.13 (Covariance of the linear least square estimator).
Consider a linear least square estimator as defined in Definition 7.7. If the disturbing noise Xy

is white and uncorrelated, i.e. Cov
(
Xy, Xy

)
= σ2 (Xy

)
Idnθ

, then the covariance matrix of the
estimator θ̂LS is given by

Cov
(
θ̂LS, θ̂LS

)
= σ2 (Xy

) (
K (u0)

⊤ K (u0)
)−1

(7.11)

Defining L :=
(

K (u0)
⊤ K (u0)

)−1
, the covariance matrix can be simplified to

Cov
(
θ̂LS, θ̂LS

)
= L Cov

(
Xy, Xy

)
L⊤. (7.12)

Remark 7.14
Here, we like to note that within the least square estimator (7.10)(

K (u0)
⊤ K (u0)

)
θ̂LS(N) = K (u0)

⊤ z

the multiplication K (u0)
⊤ z includes an N × nθ and a nθ × 1 matrix. To this sum, we can

apply the central limit theorem we gives us that the estimator θ̂LS asymptotically converges to a

Gaussian distribution even if Xy is not Gaussian distributed, that is

lim
N→∞

θ̂y = N
(
E
(
θ̂LS
)

, Cov
(
θ̂LS, θ̂LS

))
.

Task 7.15
Given Assumption 7.2, consider the model from Task 7.10

y0 = θ

and suppose the noise Xy to be white and uncorrelated. Calculate the covariance.

Solution to Task 7.15: Using K = (1, . . . , 1)⊤ in (7.11) we obtain

Cov
(
θ̂LS, θ̂LS

)
=

1
N

σ2 (Xy
)

.
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Task 7.16
Consider the model from Task 7.11

y = u1θ1 + u2
2θ2

and again assume Assumption 7.2 to hold and the noise Xy to be white and uncorrelated, i.e.

Cov
(
Xy, Xy

)
= σ2 (Xy

)
Idnθ

. Calculate the covariance matrix.

Solution to Task 7.16: Applying (7.11) we directly have

Cov
(
θ̂LS, θ̂LS

)
= σ2 (Xy

) (
K (u0)

⊤ K (u0)
)−1

Task 7.11
= σ2 (Xy

)
N
∑

k=1
u2

1(k)
N
∑

k=1
u1(k)u2

2(k)

N
∑

k=1
u1(k)u2

2(k)
N
∑

k=1
u4

2(k)


−1

.

Summarizing linear least squares, we obtain the advantages and disadvantages listed in Table 7.1.

Table 7.1.: Advantages and disadvantages of least squares

Advantages Disadvantages
✓ Direct applicability ✗ Requires „good“ model
✓ Analysis holds for entire method ✗ All inputs treated equally
✓ Unbiasedness and consistency guaran-

teed under assumptions on stochastic
variables

✗ Not efficient

7.4. Weighted least square estimator

So far, we have only been looking at equally weighted measurements in (7.4) (and (7.5)). How-
ever, it may be desirable to change this property, e.g. to suppress measurements with high uncer-
tainty and to emphasize those with low uncertainty. To design such a weighting, the covariance
matrix can be used.
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In practice, it is not always clear which weighting should be used. Yet certain indicators can be
used to improve the estimator. For example, if it is known that the model exhibits errors, then
utilizing the covariance matrix may not be a good idea. Instead, the user may prefer to put a
dedicated weighting in order to keep the model errors small in some specific operation regions.

Definition 7.17 (Weighted Least Square estimator).
Consider a linear-in-parameter model (7.6) and the linear error function (7.7). The weighted least
square estimator θ̂WLS(N) is given by

θ̂WLS(N) = argmin
θ

JWLS(N, θ), with JWLS(N, θ) :=
1
2

e(θ)⊤We(θ) (7.13)

where W ∈ RN×N is symmetric and positive definite.

Again we can utilize the quadratic nature of JWLS to compute the minimizer explicitely via

∂JWLS(N, θ)

∂θ
= 0.

This gives us

0 =
∂JWLS(N, θ)

∂θ
= e(θ)⊤W⊤ ∂e(θ)

θ
= e(θ)⊤W⊤(−K (u0)) = −K (u0)

⊤ We(θ).

Solve the equation

−K (u0)
⊤ W (z − K (u0) θ) = 0

for θ reveals

θ̂WLS(N) =
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ Wz.

Hence, we have shown the following:

Theorem 7.18 (Solution of the weighted linear least square estimator).
The solution to the weighted linear least square estimation problem (7.13) is given by

θ̂WLS(N) =
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ Wz. (7.14)
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Task 7.19
Consider the model from Task 7.11

y = u1θ1 + u2
2θ2.

Design a weighting matrix W such that measurements with larger index k are associated with

higher weights.

Solution to Task 7.19: One choice could be

W = diag(0,
1

N − 1
,

2
N − 1

, . . . , 1) ∈ RN×N.

To illustrate the impact of this choice between the θ̂LS and θ̂WLS, we again reconsider our
prior illustration as shown after Task 7.11. For the respective values, we obtain the result
display in Figure 7.3. Here, we see that the estimated curve deviates for measurements with
small index k. This is to be expected since the respective weights are very small.
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Figure 7.3.: Sample measurements and estimation for Example ??
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7.5. Properties of the weighted linear least square

estimator

Considering the biasedness, we utilize z = y(Xy) to compute

E
(
θ̂WLS

) (7.14)
= E

((
K (u0)

⊤ WK (u0)
)−1

K (u0)
⊤ Wy(Xy)

)
(7.2)
=
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ WE
(
y0 + Xy

)
=
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ Wy0 +
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ WE
(
Xy
)

(7.6)
=
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ WK (u0) θ +
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ WE
(
Xy
)

= θ +
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ WE
(
Xy
)

.

Now, in order for θ̂WLS to be unbiased, we require E
(
Xy
)
= 0.

Corollary 7.20 (Unbiasedness of the weighted linear least square estimator).
Consider a weighted linear least square estimator as defined in Definition 7.17. If the probabilis-

tic part of the output satisfies E
(
Xy
)
= 0, then the least square estimator θ̂WLS is unbiased.

Similarly, we can compute the covariance matrix of the estimator θ̂WLS using the arguments from
the unweighted case. Here, we use the abbreviation K := K (u0).

Cov
(
θ̂WLS, θ̂WLS

)
= E

((
θ̂WLS − E (θ)

) (
θ̂WLS − E (θ)

)⊤)
(7.14)
= E

(((
K⊤WK

)−1
K⊤WXy

)((
K⊤WK

)−1
K⊤WXy

)⊤
)

=

((
K⊤WK

)−1
K⊤W

)
E
(

XyX⊤
y

)((
K⊤WK

)−1
K⊤W

)⊤

=

((
K⊤WK

)−1
K⊤W

)
Cov

(
Xy, Xy

) ((
K⊤WK

)−1
K⊤W

)⊤

Hence, we can conclude the following about the covariance of θ̂WLS:

Corollary 7.21 (Covariance of the weighted linear least square estimator).
Consider a weighted linear least square estimator as defined in Definition 7.17. Then the covari-
ance matrix of the estimator θ̂WLS is given by

Cov
(
θ̂WLS, θ̂WLS

)
= L Cov

(
Xy, Xy

)
L⊤ (7.15)
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where L :=
(

K (u0)
⊤ WK (u0)

)−1
K (u0)

⊤ W.

This result allows for a very interesting conclusion shown in [1], namely that the covariance
matrix can be minimized if the weight is chosen as the inverse of the covariance matrix of the
random variable Xy, that is W = Cov

(
Xy, Xy

)−1.

Corollary 7.22 (Minimal covariance of the weighted linear least square estimator).
Consider a weighted linear least square estimator as defined in Definition 7.17. If the weighting

matrix is chosen as W = Cov
(
Xy, Xy

)−1, then the covariance matrix of θ̂WLS is minimal and

given by

Cov
(
θ̂WLS, θ̂WLS

)
=
(

K (u0)
⊤ WK (u0)

)−1
. (7.16)

Table 7.2.: Advantages and disadvantages of weighted least squares

Advantages Disadvantages
✓ Direct applicability ✗ Requires „good“ model
✓ Unbiasedness, consistency and effi-

ciency guaranteed under assumptions
on stochastic variables

✗ Requires knowledge on stochastic
variable

✓ Analysis holds for entire method ✗ Difficult to adapt





CHAPTER 8

KALMAN FILTERING

Previously, we followed the idea to handle all available data at the same time. This is typically
only possible after all measurements have been done, i.e. not at runtime of the process itself.
In contrast to that, recursive identification methods aim to iteratively update the estimate utiliz-
ing new measurements at hand. Following this approach, an online processing of the results is
possible.
Within this chapter, we first introduce the generic concept of recursive identification and its com-
ponents. Thereafter, we discuss basic properties of the Kalman filter and present the respective
algorithm.

8.1. Recursive identification

A straightforward solution to generate such an update procedure is to redo all the calculations
after each sample. Such an approach is numerically robust and requires no further insight, yet it
may be computationally expensive depending on the number of samples and the complexity of the
computation process. For example, it is simple to recompute the mean value, but it is a complex
task to solve a nonlinear optimization problem for a dynamical model. Hence, reformulating the
problem such that only the newly required calculations are made, recuperating all the previous
results, may allow us to generate a more efficient solution method.
Here, we illustrate this approach by considering example of the mean value computation

θ̂(N) =
1
N

N

∑
k=1

zk.
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Using this formula, we can recompute the mean value once a new measurement is available via

θ̂(N + 1) =
1

N + 1

N+1

∑
k=1

zk.

To recuperate the previous sum, we can equivalently evaluate

θ̂(N + 1) =
1

N + 1

N

∑
k=1

zk +
1

N + 1
zN+1

=
N

N + 1
θ̂(N) +

1
N + 1

zN+1.

Although this form already meets our requirements of reusing previous computations, it is possi-
ble to rearrange it to a more suitable expression:

θ̂(N + 1) = θ̂(N) +
1

N + 1
(
zN+1 − θ̂(N)

)
Although this expression is very simple, it is very informative because almost every recursive
algorithm can be reduced to a similar form.
For this very special case where the dynamics is linear and the parameter can be measured directly,
we obtain the following

Corollary 8.1 (Recursive estimation of mean).
Consider the input–output model

y0 = θ

together with the estimator

θ̂(N) = argmin
θ

JLS(N, θ) =
1
N

N

∑
k=1

zk

and suppose Assumption 7.2 to hold. Moreover, suppose measurement data zk for k = 1, . . . , N +

1 to be given. Then we have

θ̂(N + 1) = θ̂(N) +
1

N + 1
(
zN+1 − θ̂(N)

)
. (8.1)

While being very limited in its range of application, the latter result still shows all components
we will see for filters. In particular, we observe the following:
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The new estimate θ̂(N + 1) equals the old estimate θ̂(N) plus a correction term, that is
1

N+1

(
zN+1 − θ̂(N)

)
.

The correction term consists of two terms by itself: a gain factor 1
N+1 and an error term.

The gain factor decreases towards zero as more measurements are already accumulated in
the previous estimate. This means that in the beginning of the experiment, less importance
is given to the old estimate θ̂(N), and more attention is paid to the new incoming measure-
ments. When N starts to grow, the error term becomes small compared to the old estimate.
The algorithm relies more and more on the accumulated information in the old estimate
θ̂(N) and it does not vary it that much for accidental variations of the new measurements.
The additional bit of information in the new measurement becomes small compared with
the information that is accumulated in the old estimate.

The second term zN+1 − θ̂(N) is an error term. It incorporates the difference between the
predicted value of the next measurement on the basis of the model and the actual measure-
ment zk+1.

When properly initiated, i.e. θ̂(1) = z1, this recursive result is exactly equal to the non
recursive implementation. However, from a numerical point of view, it is a very robust
procedure as calculation errors etc. are compensated in each step.

8.2. Filter problem and assumptions

Broadening the class of problems we just treated, we next consider filter methods. These methods
address systems given by dynamics rather than input–output systems. Our aim is to derive the
so called Kalman filter. Here, we focus on the discrete time version which is applied to systems
given by

x(k + 1) = Ax(k) + Bu(k) + Xx(k) (8.2)

y(k) = Cx(k) + Xy(k),

where x, u, Xx, y and Xy are vectors and A, B and C are matrices, see also Figure 8.1 for a
corresponding block diagram.
Similar to our previous methods, we still consider the error between measurements z and out-
puts y, but now we aim to identify the state of the system x. In order to classify the Kalman
filter problem, we first require a formal distinction of problems regarding information and time
dependency.



104

u(k)
B

Xx(k)

+
x(k + 1)

delay
x(k)

C

Xy(k)

+
y(k)

A

Figure 8.1.: Block diagram of the state space system (8.2)

Definition 8.2 (Filtering).
Consider x(·) to be a state trajectory of a system. Given a specific time instant k, we call the
problem of computing

x(j) with j < k an interpolation problem,

x(j) with j = k a filtering problem, and

x(j) with j > k an prediction (or extrapolation) problem.

The Kalman filter itself is more specific as generic filtering. In particular, within the Kalman filter
the estimate is computed based on current information and an internal dynamic for the mean value
such that new information can be integrated recursively. Our approach to deriving the Kalman
filter will involve the following steps:

1. First, we discuss a mathematical description of the model dynamics whose states we want
to estimate. Here, we focus on LTI state space models of the form (8.2).

2. Next, we implement equations that describe the propagation of the mean and the covariance
of the state with time respectively. These equations form a dynamic system by themselves.

Remark 8.3
Note that the Kalman filter provides an estimator for the state of the dynamical system, i.e.

1. The mean of the state is the Kalman filter estimate of the state.

2. The covariance of the state is the covariance of the Kalman filter state estimate.

Here, we suppose the following to hold:
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Assumption 8.4
Regarding system (8.2) we have that

the matrices A, B and C are known,

the matrix B satisfies B = 0,

the random variables Xx and Xy are independent variables,

the probability density functions fXx and fXy are normal distributions,

the expected values satisfy E (Xx(k)) = 0 and E
(
Xy(k)

)
= 0 and

the covariance matrices are given by

Cov (Xx(k), Xx(j)) = Rxδkj and Cov
(
Xy(k), Xy(j)

)
= Ryδkj.

To shorten the notation, we introduce the vector

Y(k) := {y(1), . . . , y(k)}

and denote

P(k) := Cov(x(k) | Y(k)) = E
(
[x(k)− E (x(k) | Y(k))] [x(k)− E (x(k) | Y(k))]⊤

)
Q(k) := AP(k)A⊤ + Rx(k).

Given this problem setting, we can now start to derive internal dynamic of the Kalman filter.

8.3. Propagation of mean and covariance

To write down the Kalman filter dynamics, we first need to construct the propagation of the mean
value and the covariance regarding past information. Casually speaking, we need to know how
these properties evolve regarding past information without new measurements, i.e.

E (x(k + 1) | Y(k)) = E (Ax(k) + Xx(k) | Y(k))

= AE (x(k) | Y(k)) + E (Xx(k) | Y(k))︸ ︷︷ ︸
=0

= AE (x(k) | Y(k)) .
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Hence, we directly obtain the following:

Theorem 8.5 (Mean propagation).
Given a system (8.2) such that Assumption 8.4 holds. Then we have

E (x(k + 1) | Y(k)) = AE (x(k) | Y(k)) . (8.3)

Regarding the covariance dynamics, the update is computationally more involved and reveals

Cov(x(k + 1) | Y(k)) = Cov(Ax(k) + Xx(k) | Y(k))

= E

(Ax(k) + Xx(k)− E (Ax(k) + Xx(k) | Y(k))︸ ︷︷ ︸
=AE(x(k)|Y(k))


Ax(k) + Xx(k)− E (Ax(k) + Xx(k) | Y(k))︸ ︷︷ ︸

=AE(x(k)|Y(k))

)⊤
= E

(
(Ax(k) + Xx(k)− AE (x(k) | Y(k))) (Ax(k) + Xx(k)− AE (x(k) | Y(k)))⊤

)
= E

(
A (x(k)− E (x(k) | Y(k))) (x(k)− E (x(k) | Y(k)))⊤ A⊤

)
+ E

(
Xx(k)x(k)⊤ | Y(k)

)
︸ ︷︷ ︸

=0

A⊤ + A E
(

x(k)Xx(k)⊤ | Y(k)
)

︸ ︷︷ ︸
=0

− E
(

Xx(k)E (x(k) | Y(k))⊤ | Y(k)
)

︸ ︷︷ ︸
=0

A⊤ + A E
(

E (x(k) | Y(k)) Xx(k)⊤ | Y(k)
)

︸ ︷︷ ︸
=0

+ E
(

E (Xx(k))E (Xx(k))
⊤ | Y(k)

)
︸ ︷︷ ︸

=Cov(Xx,Xx)=Rx

= AE
(
(x(k)− E (x(k) | Y(k))) (x(k)− E (x(k) | Y(k)))⊤

)
A⊤ + Rx

= AP(k)A⊤ + Rx

which is exactly our abbreviation Q(k) of the covariance dynamics. Hence, we can conclude:

Theorem 8.6 (Covariance propagation).
Given a system (8.2) such that Assumption 8.4 holds. Then we have

Cov(x(k + 1) | Y(k)) = AP(k)A⊤ + Rx = Q(k). (8.4)
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Now that we know the estimate of the mean value and the covariance, we can move forward to
integrate a new measurement.
To derive an update formula of the estimate of the mean value and the covariance, we need to
construct the probability density function of x(k + 1). The idea here is to compute an estimate of
x(k + 1) such that the probability of a respective realization after the measurement of y(k + 1) is
maximal. This probability density function, in turn, requires an extension of Bayes’ rule, which
can be derived from the conditional probability density functions

f (a, b, c) = f (a | b, c) f (b, c) = f (a | b, c) f (b | c) f (c)

f (a, b, c) = f (a, b | c) f (c).

Combining these two equations, we obtain

f (a | b, c) =
f (a, b, c)

f (b | c) f (c)
=

f (a, b | c) f (c)
f (b | c) f (c)

=
f (a, b | c)
f (b | c)

.

Substituting a = x(k + 1), b = y(k + 1) and c = Y(k) reveals

f (x(k + 1) | y(k + 1), Y(k)) =
f (x(k + 1), y(k + 1) | Y(k))

f (y(k + 1) | Y(k))

=
f (y(k + 1) | x(k + 1), Y(k)) f (x(k + 1) | Y(k))

f (y(k + 1) | Y(k))

=
fXy(y(k + 1)− CAx(k)) f (x(k + 1) | Y(k))

f (y(k + 1) | Y(k))
(8.5)

where in the second line we used f (b, c) = f (c, b) = f (c | b) f (b) and that for given Y(k) we
can substitute x(k + 1) = Ax(k) in the third line.

Remark 8.7
Within equation (8.5), the left hand side is the socalled „a posteriori“ probability density function

of x(k+ 1), which includes the knowledge obtained from the measurement y(k+ 1). On the right

hand side, we obtain the „a priori“ probability density function and take the latest measurement

y(k + 1) into account.

In the following part, we are going to determine x(k + 1) such that the probability of realizing
x(k+ 1) after the measurement y(k+ 1) is maximal. Note that we imposed the limitation that the
probability density function of the noise Xx and Xy are normal distributions, cf. Assumption 8.4.
Since the covariance matrix Cov(x(k + 1) | Y(k)) is given by Lemma 8.6 and Rx, Ry are given
by Assumption 8.4, the probability density functions fXx and fXy are determined completely. The
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denominator of (8.5) is independent of x(k+ 1) and can therefore be considered as constant when
finding the maximum. Hence, we have

max
x(k+1)

f (x(k + 1) | y(k + 1), Y(k)) =

= max
x(k+1)

e−
1
2 (y(k+1)−CAE(x(k)|Y(k)))⊤R−1

y (y(k+1)−CAE(x(k)|Y(k)))

· e−
1
2 (x(k+1)−AE(x(k)|Y(k)))⊤Q−1(k+1)(x(k+1)−AE(x(k)|Y(k)))

= max
x(k+1)

e−
1
2 (x(k+1)−AE(x(k)|Y(k)))⊤(Q−1(k+1)+C⊤R−1

y C)(x(k+1)−AE(x(k)|Y(k)))

From this equation, we directly obtain

Cov (x(k + 1) | Y(k + 1)) = P(k + 1) = Q(k + 1)−1 + C⊤R−1
y C. (8.6)

In order to compute the maximizer of f (x(k + 1) | y(k + 1), Y(k)), it is sufficient to minimize
the exponent of the above expression. Considering the necessary first order condition, we obtain(

Q−1(k + 1) + C⊤R−1
y C

)
(x(k + 1)− AE (x(k) | Y(k))) = 0

In order to obtain stationarity of the evolution, we require x(k + 1) = E (x(k + 1) | Y(k + 1)).
Inserting this into the necessary condition reveals(

Q−1(k + 1) + C⊤R−1
y C

)
E (x(k + 1) | Y(k + 1))

= Q−1(k + 1)AE (x(k) | Y(k)) + C⊤R−1
y CAE (x(k) | Y(k))

Now, we can use the matrix inverse lemma

P =
(

Q−1 + C⊤RyC
)−1

= Q − QC⊤
(

CQC⊤ + Ry

)−1
CQ

and the relation (
Q + C⊤R−1

y C
)−1

C⊤R−1
y = QC⊤

(
CQC⊤ + Ry

)−1

to obtain

E (x(k + 1) | Y(k + 1)) = (8.7)

= AE (x(k) | Y(k)) + Q(k + 1)C⊤
(

CQ(k + 1)C⊤ + Ry

)−1

︸ ︷︷ ︸
=K(k+1)

(y(k + 1)− CAE (x(k) | Y(k)))
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Remark 8.8
Note that equation (8.7) shows exactly the components highlighted for recursive estimation.

Combined, we obtain the so called Kalman filter algorithm in its most basic form:

Theorem 8.9 (Kalman filter for LTI systems without external input).
Consider a LTI model (8.2) and suppose Assumption 8.4 to hold. Moreover, suppose initial

matrices Rx, Ry as well as X(1) to be given and set P(1) = Rx. If we abbreviate X(k) :=
E (x(k) | Y(k)), then for k = 1, . . . the equations

Q(k + 1) = AP(k)A⊤ + Rx (8.8)

K(k + 1) = Q(k + 1)C⊤
(

CQ(k + 1)C⊤ + Ry

)−1
(8.9)

P(k + 1) = (Id − K(k + 1)C) Q(k + 1) (8.10)

X(k + 1) = AX(k) + K(k + 1) (y(k + 1)− CAX(k)) (8.11)

resemble the Kalman filter and provide a recursive estimator satisfying mean and covariance

propagation as given in Theorems 8.5 and 8.6.

The algorithm contains several factors, which exhibit a good interpretation regarding the compu-
tations made earlier in this chapter. Here, the time component plays an important role.

The matrix Q(k + 1) = P(k + 1 | k) represents the a priori covariance matrix of X(k +
1) = E (x(k + 1) | Y(k)) using k measurements only.

Similarly, the matrix P(k + 1) corresponds to the a posteriori covariance matrix of X(k +
1) = E (x(k + 1) | Y(k + 1)) using k + 1 measurements.

Considering the dynamic of the system, the vector AX(k) reveals the extrapolated state
variable based on the model dynamics A and k measurements.

Projecting on the output, the vector CAX(k) represents the expected output given the ex-
trapolated state of the system.

Remark 8.10
Within the algorithm, the matrices Q, P and K are independent of the measurements. Hence, these

can be computed beforehand to lower the computational complexity of the filter. Additionally, the

method remains usable when the noise is not normally distributed. In that case, however, the

solution found by the filter is no longer an optimal one.
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Similar to the case defined by Assumption 8.4, we can consider the more general LTI case with
external inputs, i.e. B ̸= 0. Recall, that the remaining assumptions are still in place, that is

Assumption 8.11
Regarding system (8.2) we have that

the matrices A, B and C are known,

the random variables Xx and Xy are independent variables,

the probability density functions fXx and fXy are normal distributions,

the expected values satisfy E (Xx(k)) = 0 and E
(
Xy(k)

)
= 0 and

the covariance matrices are given by

Cov (Xx(k), Xx(j)) = Rxδkj and Cov
(
Xy(k), Xy(j)

)
= Ryδkj.

Given these assumptions, the computations displayed before in this chapter can be modified and
the following algorithm can be derived:

Theorem 8.12 (Kalman filter for LTI systems with external input).
Consider a LTI model (8.2) and suppose Assumption 8.11 to hold. Moreover, suppose initial

matrices Rx, Ry as well as X(1) to be given and set P(1) = Rx. If we abbreviate X(k) :=
E (x(k) | Y(k)), then for k = 1, . . . the equations For k = 1, . . . do

Q(k + 1) = AP(k)A⊤ + Rx (8.12)

K(k + 1) = Q(k + 1)C⊤
(

CQ(k + 1)C⊤ + Ry

)−1
(8.13)

P(k + 1) = (Id − K(k + 1)C) Q(k + 1) (8.14)

X(k + 1) = AX(k) + Bu(k) + K(k + 1) (y(k + 1)− CAX(k)− CBu(k)) (8.15)

resemble the Kalman filter and provide a recursive estimator satisfying mean and covariance

propagation as given in Theorems 8.5 and 8.6.

Task 8.13
Consider the data given for a 6DOF inertial measurement unit displayed in Figure 8.2. Given
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accelerations along the axes and rotation velocities around the axes, derive the dynamics of

a Kalman filter for the sensor fusion problem.
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(a) IMU acceleration data in BFC
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Figure 8.2.: IMU measurement data from gyros and accelerometers for sudden strikes

Solution to Task 8.13: We define the model dynamics by

x(k) =

(
x1,BFC(k)
ẋ1,BFC(k)

)
, u(k) =

π

180◦
· ẋ1,BFC(k)

A(k) =

(
1 − (tk+1 − tk)

0 1

)
, B(k) =

(
(tk+1 − tk)

0

)
, C =

(
1 0

)
which gives us the system

x(k + 1) =

(
1 − (tk+1 − tk)

0 1

)
x(k) +

(
(tk+1 − tk)

0

)
u(k) (8.16)

y(k) =
(

1 0
)

x(k) (8.17)

To illustrate the results of Task 8.13, we consider the initial value of the Kalman filter

x(0) =

(
180◦

π · arctan 2(ẍ3,BFC, ẍ2,BFC)

0

)
,
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and the approximated covariance matrices of the disturbances

Rx =

(
E
(

π
180◦ · 0.0257 · (tk+1 − tk)

2
)

0

0 10−8

)
, Ry =

π

180◦
· 15,

which are based on physical properties of the sensors and a freely chosen bias correction value
for Rx2,2. As a reference, one can also solely use the accelerometer data to evaluate

θ̂1 =
180◦

π
· arctan 2(ẍ3,BFC, ẍ2,BFC). (8.18)

Similarly, angular velocity data can be used via integration

θ̂1(k + 1) = θ̂pitch(k) + (tk+1 − tk) ẋ1,BFC. (8.19)

For both latter approaches, however, we observe that in both cases the angles computed by (8.18),
(8.19) diverge, cf. Figure 8.3.
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Figure 8.3.: IMU Kalman filter fusion results in comparison to single sensor family results

To summarize, the Kalman filter shows the following advantages and disadvantages:

Table 8.1.: Advantages and disadvantages of Kalman filtering

Advantages Disadvantages
✓ Applicable to LTI problems ✗ No generic extension to nonlinear case
✓ Resembles recursive estimation ✗ Slow convergence
✓ Allows sensor fusion ✗ Implementation is involved
✓ Predicts/corrects covariance ✗ Requires knowledge on variable
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This script originates from a correspondent lecture Systemics held during the summer
term 2025 at the Technical University of Braunschweig. To structure the lecture and
support my students in their learning process, I prepared these lecture notes.
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