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ABSTRACT
For dielectric‐barrier discharges (DBDs) in setups lacking 2D‐translational or cylindrical symmetry, an electrical analysis within the

framework of a 3‐capacitor equivalent‐circuit model is no longer possible. In this situation, it makes sense to adapt an approach

developed in the late 1980s for analyzing partial discharges in high‐voltage systems, based on the so‐called λ function, or alternatively
to apply a fundamental theorem of electrostatics directly, on which this function is also based. The main purpose of this short

communication is to draw the attention of the scientific community of researchers interested in DBDs to the existence of a very useful

concept, published decades ago in the electrical engineering literature and apparently still little known in this community.

1 | Motivation

The considerations reported in this communication were mo-
tivated by studies on plasma deposition of thin films from Ar‐
based mixtures with fractions xP of various precursors in pin‐to‐
plate dielectric‐barrier discharges (DBDs), with pin electrodes
covered by a planar dielectric (Figure 1I) [1, 2]. With a rapid
transverse gas flow (typical average velocity vav = 50 cm/s)
through the gas gap (typical width g= 2.5 mm), film deposition
is predominantly due to cations that arrive at the temporary
cathode during transient micro‐discharges [1–3]. For most of
the applied organosilane or siloxane precursors, the positive‐ion
production in gas mixtures with xP between about 10 ppm and
a few 1000 ppm is dominated by Penning ionization, and
precursor‐derived cations are prevalent in the total cation flux
to the temporary cathode.

To determine the ion charge q transferred simultaneously with
a certain increment of film mass on the temporary cathode
during a transient microdischarge from current or charge

measurements, a suitable model must be applied. A typical
Lissajous or Q(U) figure obtained by plotting the charge Q on a
measuring capacitor as a function of the applied voltage U is
shown in Figure 1II.

Now the question arises how the externally measurable charge Q
is related to the charge q transferred in the discharge to the
electrode surfaces. Unfortunately, the equivalent‐circuit approach,
commonly applied to answer this question, fails for the used setup
as it will be explained below, based on Figure 2.

The sketches in this figure show various setups in which steady
DBDs can be sustained. For many more configurations used so
far, see Brandenburg [4]. Arrangements I and II are of practical
interest to generate large‐volume DBDs between large‐area
planar electrodes (I) or in long cylindrical setups (II). Dis-
charges in dielectric‐surrounded voids (III), on the other hand,
are examples of a large variety of “partial discharges” (PDs),
known in electrical engineering since about one century (see
Hauschild and Lemke [5, pp. 157–160] and Niemeyer [6]). IEC1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

© 2025 The Author(s). Plasma Processes and Polymers published by Wiley‐VCH GmbH.

1 of 7Plasma Processes and Polymers, 2025; e70013
https://doi.org/10.1002/ppap.70013

https://doi.org/10.1002/ppap.70013
http://orcid.org/0000-0001-5678-5845
http://orcid.org/0000-0002-7291-9265
mailto:c-p.klages@tu-braunschweig.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/ppap.70013
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fppap.70013&domain=pdf&date_stamp=2025-04-06


standard 60270:2000 defines PDs as “localized electrical dis-
charges that only partially bridge the insulation between con-
ductors”2 [5, p. 158]. Arrangements like IV or V are used to
study DBDs with small gas residence times [1, 2] or DBDs
consisting of single discharge filaments [7].

There is an important difference between designs I and II on the
one hand and III, IV, V on the other: due to the virtual 2D‐
translational symmetry of I and the cylindrical symmetry of II3,
all points of the dielectrics' surfaces are equivalent and, with a
voltage U between electrodes 1 and 2, on the same electric
potential ϕ: Therefore, a virtual third conductor can be applied
along these surfaces without changing capacitances CI or CII.
With three conductors, two capacitances can be defined: That is
why C=CI or CII can be calculated by Equation (1), repre-
senting a serial connection of a capacitor completely filled by
the dielectric with capacitance Cd, and an “empty” capacitor
with capacitance Cg:

C
C C

C C
=

+
.

d g

d g
(1)

Due to the lack of the required symmetry, that is not possible
for setups III, IV, and V.

2 | Equivalent Electric Circuits for DBDs

The difference between the two types of partially filled capaci-
tors described in the previous chapter is of considerable
importance for electrical discharge modeling of discharges by
equivalent electric circuits, applied for the first time in 1928 to
study gas breakdown in voids in laminated insulators, see
Hauschild and Lemke [5, pp. 161–164].

The simplest equivalent circuit model for a DBD cell comprises
two capacitors Cg and Cd in series, and parallel to Cg, as an
element representing the discharge, a “black box” [8], a variable
resistor [4, 9], or a current source [10], as in Figure 3 (without
the capacitance Cs).

To describe real DBD devices, various reasons require a modifi-
cation of this equivalent circuit: Stray (or parasitic) capacitances

FIGURE 1 | (I) Photograph of a typical discharge in the pin‐to‐plate DBD used in Bröcker et al. [1], with glass dielectric (dashed), Si ground

electrode (gray), and a sharpened pin as high‐voltage electrode (gray, length L= 30mm, xP = 50 ppm HMDS/Ar, amplitude of applied sinusoidal

voltage U0 = 1.75 kV, frequency f= 19 kHz, mean gas flow velocity vav = 50 cm/s). (II) Lissajous figure: from the charge Q on the measuring capacitor

(Cm= 1 nF), the product CtotU (Ctot depends on L; with L= 50mm, Ctot = 1.5 pF) was subtracted to improve the visibility of the relatively small

discharge‐induced charge increments ΔQ near │U│ = 1 kV (│ΔQ│= 0.29 nC, vs. Ctot · 1 kV = 15 nC). (The cause of the small dips in Q−CtotU near

U= 0V (black arrows) is so far unknown.)

FIGURE 2 | Arrangements of two electrodes with intermediary dielectric layers (orange) and gas gaps or gas‐filled void (cross sections). (I) 2D‐
extended planar arrangement. (II) Long cylinder. (III) Void in a dielectric, filling the space between two electrodes. (IV) Pin‐to‐plate arrangement,

dielectric‐covered pin. (V) Pin‐to‐pin arrangement, dielectric‐coated pins.
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Cs due to unavoidable proximity of conductors on different po-
tentials can be caused by cables, high‐voltage connections, or
throughputs. Not‐discharged parts of a gas gap are electrically
equivalent to stray capacitances and can likewise be accounted
for by one or several parallel capacitances [8, 11, 12].

In high‐voltage engineering, equivalent circuits with three
capacitances, also known as “abc models” due to their common
names Ca, Cb, Cc, have been used to model PDs since the 1950s
(see Hauschild and Lemke [5, pp. 160–170] and Whitehead [13]).
Main objective of such models has been to relate externally
measurable “apparent” charges to “true charges” transferred by
PDs, for example, in micro‐cavities in an insulating material.

Relations between internal, discharge‐related quantities like
discharge current i(t), gap charge q(t), gap voltage u(t), and
measured or given quantities Q(t), I(t), and U(t) can be obtained
by extending the equivalent circuit of Liu and Neiger [10] by a
capacitance Cs. The resulting Equations (1)–(2) agree with
equations given before in other papers in different notations
(Ccell ≡ CgCd/(Cg + Cd); Ctot ≡ Ccell + Cs) [8, 11].

⋅










 


i t

C C
I t C

dU t

dt
( ) =

1

1 − /
( ) −

( )
;

cell d
tot (2)

⋅






q t

C C
Q t C U t( ) =

1

1 − /
( ( ) − ( ));

cell d
tot (3)

⋅u t
C

C C U t Q t( ) =
1

[( + ) ( ) − ( )].
d

d s (4)

During one period of duration T of an applied ac voltage (e.g., a
sinusoidal voltage), there are two points in time (t01 and t02 =
t01 + T/2) when U= 0 and the ratio Q(t01)/q(t01) =Q(t02)/q(t02)
is a constant depending only on capacitances Ccell (or Cg) and
Cd (Equation 3). For the differences ΔQ0 ≡Q(t01)−Q(t02)
(Figure 1II) and Δq0 ≡ q(t01)− q(t02) follows

⋅ ⋅ ⋅














Q C C q

C C
q

C

C
qΔ = (1 − / ) Δ =

1

1 + /
Δ = Δ .0 cell d 0

g d
0

cell

g
0

(5)

In the electrical‐engineering literature, a Danish group of au-
thors criticized the capacitance‐based equivalent‐circuit
approach since the late 1980s, arguing that it does not cor-
rectly reflect the physics of PDs [14, 15]. In fact it must be noted
that Equations (2)–(5) are based on the separability of Ccell into
Cd and Cg which is not given for arrangements III–V of
Figure 2.

3 | Induced Charge Q via Pedersen's λ Function

Pedersen and colleagues published an alternative to the “abc
model” of PDs, based on fundamental field‐theoretical argu-
ments [14–16]. Relevant articles appeared only in the
electrical‐engineering literature and are apparently still hardly
known in the community of researchers and engineers inter-
ested in DBDs.

In the alternative approach, a dimensionless scalar‐field func-
tion λ plays a central role.

λi is defined as the electric potential distribution in a system

• with at least two electrodes E1 and E2 and one or more
dielectrics D,

• without any free charges (as opposed to polarization char-
ges) such as surface charges on dielectrics or volume
charges in the gas phase,

• with a potential of ϕi= 1 V on electrode i while other
electrodes are grounded,

divided by ϕi.

Then, in the absence of any space charges between the
electrodes4, a surface charge density distribution σ on the
dielectric(s) will induce a charge Qi on the electrode i, whereby

Q λ σ s= − d .i i
D

(6)

The integral extends over the whole surface D [14].

An application of this equation to a pin‐to‐plate arrangement
with a dielectric‐covered pin (Figure 1IV) as the single dielectric
will be outlined further below. Equation (6) can, however, also
be applied to setups with dielectrics covering both electrodes.

4 | Induced Charge Q From Green's Reciprocity
Theorem

Equation (6) can alternatively be obtained by applying Green's
reciprocity theorem5 (1828), on which Pedersen's approach is
also based, directly to the system of electrodes and dielectric(s)
considered above. Clemmow gives a very concise formulation of
the theorem [18]: If charge densities ρ and ρ′ separately give
rise to respective potentials ϕ and ϕ′, then

 ρϕ dv ρ ϕdv′ = ′ ,
V V

(7)

FIGURE 3 | Equivalent electric circuit for a DBD in setup I or II.

i and u are discharge current and gap voltage, respectively. Voltages U

and Ups (terminal voltage of the high‐voltage power source “AC HV”)
are virtual equal, when the measuring capacitor Cm is chosen large

enough. See the text for further explanation.
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where the volume integrals are over all space V. The validity
of Equation (7) for systems with dielectrics was shown
by Smythe [19]; Clemmow gives the proof in a different
notation [18].

Figure 4 shows configurations C and C′ for a pin‐to‐plate
arrangement with two electrodes E1 and E2 and an interposed
dielectric D. Spatial distributions of charge densities ρ and ρ′
and potentials ϕ and ϕ′ are chosen as follows:

• C: Nonzero surface charge distribution σ on the dielectric's
D surface, value of potential distribution ϕ at both elec-
trodes E1, E2: ϕ= 0

• C′: σ′= 0 on D, value of potential distribution ϕ′ on elec-
trodes: ϕ1′= 1 V and ϕ2′= 0

Again, the gas phase is considered to be free of charge. As
charges can reside either on the electrodes E or on the
dielectric D, both integrals in Equation (7) can be split
into two parts, one for E (including contributions from
E1 and E2) and one for D. Charges σ on D are assumed to
reside only on its surface, the volume of D is assumed to be
charge‐free.

Then the volume integrals over the dielectric D are reduced to
surface integrals over its surface (dτ= differential area):

   ρϕ dv σϕ dτ ρ ϕdv σ ϕdτ′ + ′ = ′ + ′ ,

E : electrodes, D : dielectric.

E D E D (8)

The 3rd and the 4th integral in Equation (8) are zero because
ϕ= 0 on both electrodes and σ′= 0 on D. Only E1 contributes to
the first integral, because ϕ2′= 0. E1 is on a spatially constant
potential ϕ1′= 1 V which can be placed in front of the integral,
the remaining volume integral represents the charge Q1

induced on E1 by the charge density σ on D:

⋅ ϕ ρdv Q ϕ σdτ′ = (1V) = − ′ .1
E

1
D

(9)

In contrast to the potentials of conductors E1 and E2, ϕ′ on the
surface of the insulator D in the pin‐to‐plate arrangement is
location‐dependent, due to the lack of 2D‐translational or

cylindrical symmetry. Dividing this potential through 1 V results
in λ1 as defined in Section 3:

 Q ϕ σdτ λ σdτ= − ( ′/1 V) = − .1
D D

1 (10)

Equation (10) equals Equation (6) for the case of i= 1.

5 | Application to Arrangements I or II, and
IV—Transferred Charge

Arrangements I and II are basically plate‐ or cylindrical
capacitors that are partially filled with dielectrics. Since here the
surfaces D of the dielectrics are on a location‐independent
potential, λ1 is constant and can be placed in front of the
integral in Equation (10). The remaining integral equals q, the
total surface charge on D. Equation (1) can now be applied to
calculate the capacity Ccell of the capacitor, and it follows from
the voltage division in that capacitor that λ1, that is, the voltage
at the gap/dielectric interface for potentials of 1 V at electrode 1
and 0 V at electrode 2, divided by 1 V, equals Ccell/Cg:

⋅ ⋅ ⋅Q λ σ ds C C q= − = − ( / ) .1 1
D

cell g (11)

Equation (11) is—apart from the sign, which actually must be
negative—in agreement with Equation (3) at U= 0. Note that
this equation holds for any spatial distribution of the charge q
on D—also, for example, for a localized charge left behind from
a single microdischarge.

As for other arrangements, a relatively simple expression can be
obtained for Q1 in case of axial symmetry like pin‐to‐plate ar-
rangements with an interposed dielectric contacting electrode 1
like in Figure 4 where the origin and coordinates r and z of a
system of cylindrical coordinates r, θ, z are indicated for con-
figuration C′. If the radius of the dielectric disc rD is large
compared with the radial extension of the discharge so that no
charge is deposited on the disk's edge or its upward facing
surface, it suffices to integrate over θ and r at z= 0 in the system
of cylinder coordinates r, θ, z (see Figure 4C′), to calculate Q1

from Equation (10). This will capture all charges left behind on
the part of the dielectric's surface D which is downward ori-
entated in Figure 4, facing the grounded electrode 2:

FIGURE 4 | Two different configurations C, C′ of potentials ϕ on electrodes E1, E2 (blue) and charge densities σ on the surface of a dielectric D

(orange). C represents the experimental situation of a pin‐to‐plate DBD with a pin‐backed dielectric after a discharge has left behind charges (red) on

D, while the applied voltage is crossing zero. C′ is the configuration for which the electric potential ϕ′ on the surface of D is calculated to obtain the λ1
function by division through 1 V. r, z (green) refer to cylinder coordinates used in Section 5.
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 


Q λ r θ σ r θ r r θ

λ r σ r r r

= − ( , , 0) ( , , 0) d d

= −2π ( ) ( ) d

π r

r

1
0

2

0
1

0
1

D

D
(12)

or, with the normalized surface charge density distribution σ r( )n ,
defined as







σ r σ r σ r r r σ r q( ) = ( ) 2π ( ) d = ( )/ :

r

n
0

D

(13)

⋅ ≡ ⋅





Q λ r σ r r r q B q= − 2π ( ) ( ) d − .

r

1
0

1 n 1

D

(14)

The bracketed term in Equation (14), here provisionally abbrevi-
ated B1, plays the role of the expression C C C C(1 − / ) = /Cell d Cell g

in Equation (3). Note that B1 is positive for both signs of q.

In pin‐to‐plate configurations with interposed dielectric disks as
shown in Figure 4, λ1(r) on the downward‐oriented surface of D
will generally be bell‐shaped, that is, it will have a single
maximum at r= 0 and approach zero for large r, see Figure 5 in
Section 6 for a confirmation of this expectation for a special
geometry. λ1(r) weights the contributions of annulus‐shaped
surface charge elements σ r r d r2π ( ) to the total induced
charge Q1 which are increasing with decreasing width of σ r( )n :
For given q and λ1(r), Q1 is approaching a maximal λ1(0) · q for a
hypothetical delta distribution of charges at r= 0; λ1(0) is the
upper limit for the ratio −Q1/q.

In general, λ1 will be calculated from the distribution of electric
potential for an arrangement such as that shown in Figure 4C′,
by electrostatic field simulation. The corresponding function for
electrode 2, λ2, can then be derived by following consideration:
reversing the sign of the potential at electrode 1 (ϕ1 = 1 V →
ϕ1 =−1 V) reverses the sign of the potential everywhere in the
arrangement. If the potential is then increased by 1 V every-
where, the result is λ2 = 1− λ1 because the potential distribu-
tion on the surface D, will also change its sign and be increased

by 1 V. It follows that Q2 +Q1 =−q: charges on D and on the
two electrodes add to zero, as required.

In the following, only electrode 1 is considered and the index 1
of Q, λ and Β is dropped. Using Q(U) plots (Lissajous figures),
Q(t01) and Q(t02) can be measured (e.g., see Figure 1II). In
general, the normalized charge distributionσ r( )n and therewith
B are different for surfaces charged positively and negatively
by transient discharges with the corresponding polarity,

≠σ r σ r( ) ( )n
+

n
− . This could already be surmised from the char-

acteristic differences in the famous dust figures produced with
“positive electricity” and “negative electricity,” respectively, by
G. C. Lichtenberg in Göttingen/Germany in the spring of 1777
[22]. More recently an inequality of σ r( )n for positive and
negative charges was demonstrated in many papers using the
electro‐optic effect (Pockels effect), for example, see Abolmasov
et al. [23] and Stollenwerk et al. [24], and as an application to a
pin‐to‐plate DBD arrangement with a dielectric‐covered plate
electrode [25]. In asymmetric DBDs, the amounts of positive
and negative surface charges at U= 0, too, are not necessarily
equal, q(t01) ≠−q(t02) [26]. Therefore assuming that q(t01) > 0
and q(t02) < 0, the equation for ΔQ0 is

≡Q Q t Q t B q t B q tΔ ( ) − ( ) = ( ) − ( ).0 02 01
+

01
−

02 (15)

Equation (15) shows (i) that there is not necessarily a propor-
tionality of ΔQ0 and Δq0 ≡ q(t01)− q(t02) and that a difference in
the absolute values of Q(t01) and Q(t02) (see Figure 1II as an
example) can be due to a difference between B+ and B− and a
difference between the absolute values of q(t01) and q(t02) as
well, or to both.

It is important to note that B+ and B− are not only dependent on
the geometrical design of a setup and the dielectric's permit-
tivity, like electrical capacitances are: B+ and B− generally
depend also on the sign of charges and possibly, as in the ex-
amples shown below, on experimental parameters such as the
fraction xP of precursor vapor in a Penning mixture with argon.

6 | Preliminary Conclusions From Measured
Film Thickness Profiles

If, for axial‐symmetric DBD arrangements like in Figure 4,
normalized distributions σ r( )n

+ and σ r( )n
− are known from ex-

periment or simulation, and λ(r) from analytical or numerical
calculation, B+ and B− can be calculated from Equation (14)
and charges q(t01) and q(t02) can be obtained separately from
Q(t01) and Q(t02). Without any knowledge of charge density
distributions, at least the upper limits B B λ= = (0)max

+
max
− can

be calculated. The latter equations apply exactly for delta dis-
tributions of charge at r= 0 and are reasonable approximations
when the widths of the charge distributions are narrow, com-
pared with the width of the bell‐shaped λ(r) as will be shown in
the following.

In film deposition experiments motivating the present consid-
erations, the hypothesis may be put forward that (i) film
thickness profiles dF(r) are due to the time‐integrated flux of
cations to the dielectric surface D while D is a temporary

FIGURE 5 | Graphs of calculated function λ(r,L) on the dielectric's

surface. Curves dF,n(r,L) are measured radial film thickness distribu-

tions (see text), normalized by dividing through dF(0,L). Both, λ(r,L) and
dF,n(r,L) show a significant dependence on the length L of the HV

electrode [22].
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cathode [1] and that (ii) the incoming ions first neutralize
negative charges, deposited in the previous micro‐discharge
with a radial dependence σ r( )− , and (iii) subsequently build up
a positive charge density σ r( )+ . Therefore, it appears reasonable
to hypothesize that ∝d r σ r σ r( ) ( )‐ ( ),F

+ − provided that cation
fluxes and film formation yield (mass per incoming ions) are
the same for ions deposited on negatively and positively charged
surfaces6. These assumptions do not give the surface charge
densities separately but it allows at least to argue that their
distributions are not broader than dF(r).

Figure 5 shows λ(r,L) graphs from electrostatic simulations for a
pin‐to‐plate arrangement like it is shown in Figure 1IV, with a
gap width g of 2.5 mm, a 1.25‐mm thick borosilicate plate
(permittivity ε= 4.6), and different pin lengths L. Peak values
λ(0,L) are 0.40, 0.53, and 0.72 for L= 1, 3, and 50mm, respec-
tively. As mentioned above, these are the maximal ratios −Q/q,
approached for very narrow σ r( )n distributions.

Radial film thickness profiles dF(r,L) were measured on films
deposited on the dielectric's surface in an experimental
setup with parameters given in Section 1, using 50 ppm HMDS
in Ar, flowing through the gap with an average velocity
vav = 50 cm/s. The amplitude U0 of the applied sinusoidal
voltage (f= 19 kHz) was chosen 500 V above the L‐dependent
extinction voltage; it was Ua,0 = 2.9, 2.2, and 1.7 kV for L= 1, 3,
and 50 mm, respectively. In Figure 5, normalized thickness
profiles are shown, obtained by dividing through dF(0,L).
These profiles are relatively narrow, compared to the bell‐
shaped λ(r,L). Over a wide range of radii r, the thickness
profiles can be fitted very well by a sum of two Gaussian
functions G1(r,L) and G2(r,L) with widths ratios w1(L)/w2(L)
between about 5 and 6. The narrower component represents
only 3% (for L= 3mm) to 6% (for L= 1 or 50 mm) of the total
deposited film volume.

Just to get an impression of B+/− in this situation, similar dis-
tributions were tentatively assumed for σ r σ r( ) and − ( ),+ − so
that ≅ ∝σ r σ r d r( ) − ( ) ( )+ −

F With this assumption, B+/−= 0.35,
0.47, and 0.64 are obtained for L= 1, 3, and 50mm. These results
are only 10%–12% smaller than the maximal possible values,
λ(0,L) (see above), and to the 2nd digit behind the decimal point
independent of the presence of the narrow component G2.

The peculiar thickness profiles suggest that there are different
deposition mechanisms at work for the narrow and the wide
component, respectively. Preliminary infrared‐spectroscopic
investigations support this conjecture [21]. Further experi-
ments and results of 2D simulations are expected to shed a
light on this issue.

7 | Summary

The commonly applied analysis of internal DBD parameters
(discharge current, gap voltage) in terms of equivalent circuits
with three capacitors fails for discharges in setups lacking 2D‐
translational or cylindrical symmetry. In such cases it is useful
to adapt a field‐theoretical approach based on the so‐called λ
function, developed for the analysis of partial discharges in
high‐voltage systems. Alternatively, a fundamental theorem of

electrostatics can be applied directly, on which the λ function
is also based.

In general, the ratio B of the charges Q, induced on the elec-
trodes, and the internal charges q, deposited on the dielectrics
by the discharge currents, is not constant like in simple
equivalent circuit analyses: B depends on the distribution of
surface charge on dielectrics and thus, for example, on the sign
of the charge and on experimental parameters that go beyond
the mere geometric design of the setup. In case of the studied
pin‐to‐plate arrangements of electrodes and dielectric, it is
sufficient to know the distribution of the electric potential
distribution at a certain voltage between the electrodes, to
calculate the λ function on the dielectric's surface and from
this an upper limit of B. The actual B will be close to this limit
if the charge density distribution is relatively narrow, com-
pared with the distribution of the λ function on the dielectric's
surface, so that charges are mostly deposited close to maxi-
mum of the λ function. Beyond that, conclusions or at least
conjectures regarding B are possible if the shapes of charge
distributions are known from experiments or simulations, or if
reasonable assumptions about the distributions of charges can
be made.
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Endnotes
1International Electrotechnical Commission

2It should be noted that DBDs are always PDs in the electrotechnical
sense, as they “only partially bridge the insulation between the
conductors,” which consists of gas and dielectric.

3Edges of setup I and endings of setup II are neglected. Concentric
(spherical) arrangements of conductors are not considered here.

4Note that eq. (2) in Pedersen [14] includes space charges but in this
brief communication only surface charges on dielectrics are con-
sidered. This simplification is possible because in the experiments on
which this work is based, discharge currents no longer flow when the
applied voltage U crosses 0, see Figure 1II.

5While the name “reciprocity theorem,” used in Griffith' textbook [17],
has prevailed in papers published in the recent decade, other
monographies use the terms “reciprocal theorem” (see Clemmow
[18]) or “reciprocation theorem” (see Smythe [19] or Jackson [20]).

62D simulations are presently under way at INP Greifswald to model
charged‐particle fluxes and surface charge densities. Expected results
may help to decide on the validity of the hypotheses and assumptions
used here [27].
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