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Eren Keskin, Roland Meyer, and Sören van der Wall

TU Braunschweig, {e.keskin, roland.meyer, s.van-der-wall}@tu-bs.de

Abstract. We propose urgency programs, a new programming model
with support for alternation, imperfect information, and recursion. The
novelty are urgency annotations that decorate the (angelic and demonic)
choice operators and control the order in which alternation is resolved.
We study standard notions of contextual equivalence for urgency pro-
grams. Our first main result are fully abstract characterizations of these
relations based on sound and complete axiomatizations. Our second
main result settles their computability via a normal form construction.
Notably, we show that the contextual preorder is (2h − 1)-EXPTIME-
complete for programs of maximal urgency h when the regular observable
is given as an input resp. PTIME-complete when the regular observable
is fixed. We designed urgency programs as a framework in which it is
convenient to formulate and study verification and synthesis problems.
We demonstrate this on a number of examples including the verification
of concurrent and recursive programs and hyper model checking.

Keywords: Alternation, Imperfect Information, Contextual Equivalence,
Full Abstraction, Axiomatization, Verification, Complexity.

1 Introduction

Algorithmic program verification may seem like a zoo of approaches that do not
have much in common. Refinement is checked by establishing a relation between
the program and a reference implementation [1], the model checking of linear-
time properties [2] is formulated as language inclusion [3], and branching-time
properties are reduced to games [4]. This variety makes it difficult to choose a
verification approach when one is confronted with a new class of programs. For-
tunately, there are master problems that provide guidance. When the new class
of programs is concurrent, there is a good chance that the verification problem
can be cast as coverability in well-structured transition systems [5,6,7]. When
it is recursive, one would try to reduce it to higher-order model checking [8,9].
The master problem then informs us about how to implement the verification
algorithm [10], from the symbolic representation of program states [11] to the
search strategy [12]. But the master problems are no silver bullet. Well-structured
transition systems are not good at modeling recursion, and the verification of
branching-time properties is undecidable for them. Higher-order models, in turn,
are not good at modeling concurrency.

We propose a new programming construct to capture verification tasks that
are not handled well by the existing master problems. The key insight is that by
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combining alternation [13] with imperfect information [14] one can model con-
currency even in a sequential programming model. We combine the two by adding
urgency annotations to the (angelic and demonic) choice operators. Choices are
classically resolved in program order [13]. Urgency annotations are natural num-
bers that define when a choice has to be made: the higher the urgency, the
sooner. The lower urgency choices remain unresolved in the program term until
all higher urgency choices have been made. Choices of different urgency can thus
be imagined as belonging to different components in the verification task, the
program threads or the specification that has to judge the program behavior.
To illustrate the order in which choices with urgency are made, consider the
transition sequence

(al ∧1 ar).(b ∨2 c) → (al ∧1 ar).b → al.b .

The demonic choice ∧1 of urgency 1 is resolved only after the angelic choice ∨2

of urgency 2, although the demonic choice is written earlier in the program.

Urgency programs not only serve as a convenient backend to which to reduce
verification tasks. By comparing the reductions, we also understand how the
tasks are related. As a running example, we study the formulation of simulation
and language inclusion as urgency programs. Let the systems of interest be A
and B from Figure 1. We examine whether (a) A is simulated by B and (b) the
language of A is included in the language of B. The transitions al and ar carry
the observation a. The programs p- and p⊆ from Figure 1 encode the simulation
resp. the inclusion problem. For now, just observe that the difference in these
programs is merely a shift in urgency.

BOB = {alb, arc}
al ar

b c

A OA = {ab, ac}
a

b c

p- = a.(al ∧1 ar).(b ∨1 c).(b ∧1 c)

p⊆ = a.(al ∧1 ar).(b ∨2 c).(b ∧1 c)

Fig. 1: Automata A, B and programs p-, p⊆ for simulation resp. inclusion.

Urgency programs can only provide guidance for solving verification tasks
if their verification problem is decidable and the decision procedure is easy to
adapt to the new setting. To develop decision procedures for urgency programs,
we follow a common approach: understand the contextual equivalence [15] of
the programming model, then one understands how to summarize programs,
and every algorithm will be a fixed point over these summaries. The notion of
contextual equivalence depends on the level of detail at which one intends to
observe the program behavior. We consider two standard definitions [16]:

p ≃ q if ∀O.∀c[•]. c[p] ⇓ O iff c[q] ⇓ O

p ≃O q if ∀c[•]. c[p] ⇓ O iff c[q] ⇓ O .
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The former definition quantifies over observables O and contexts c[•] and is our
notion of contextual equivalence. The latter fixes an observable, like termination
or reaching an error, and we refer to it as O-specialized contextual equivalence.
Due to the alternating choices in urgency programs, making an observation is
defined in a game-theoretic way: c[q] ⇓ O means Eve has a winning strategy in
the game arena [[c[q]]] when O ⊆ Σ∗ is the objective.

Our first contribution are full abstraction results: contextual equivalence and
its specialized variant coincide with congruence relations that neither quantify
over contexts nor observables. The congruences are defined axiomatically, and
one may say we axiomatize the contextual equivalences. An important insight is
that imperfect information distributes over perfect information. In the example,

(al ∧1 ar).(b ∨2 c) ≃ (al ∧1 ar).b ∨2 (al ∧1 ar).c ≃ (al.b ∧1 ar.b) ∨2 (al.c ∧1 ar.c) .

Our second contribution is to settle the complexity of the two contextual
equivalences and their preorder variants. The main finding is that the specialized
contextual preorder is (2h − 1)-EXPTIME-complete for programs of maximal
urgency h when the regular observable is given as an input resp. PTIME-complete
when it is fixed. A consequence is indeed that the verification problem can be
solved with the same complexity. To get the upper bound right, an important
idea is to factorize the set of contexts. We equate contexts c[•] that have the
same solution space: the same set of programs p so that c[p] ⇓ O. The challenge
is to handle the factorization algorithmically. We show how to represent solution
spaces using the novel concept of characteristic terms.

For the lower bound, we reduce context-bounded multi-pushdown games [17]
to the verification of urgency programs. This justifies our claim that urgency
programs can capture concurrency in a rather natural way. To further demon-
strate the usefulness of urgency programs, we show how to encode other popular
verification problems, notably the recent hyper model checking [18,19].

Structure. After an introduction to urgency programs, we state the full abstrac-
tion results in Section 3, followed by the proofs of soundness, normalization,
and completeness. In Section 7, we give the decidability and complexity results,
followed by the upper and lower bound proofs in Sections 8 and 9.

2 Programming Model

Throughout the development, we fix a natural number h > 0 for the maximal ur-
gency in programs, a finite alphabet Σ of terminal symbols with typical elements
a, b, c, and a finite or infinite set of non-terminals N with elements A, B, C. Each
non-terminal has a so-called defining program term given by E : N → T.

The set T of program terms (of urgency up to h over Σ, N) is defined as

p ::= a | skip | err | A | p.p | u
∨

P |
u

∧
P .

Terminal symbols represent program commands with visible behavior, skip is a
command without visible effect, and err aborts the computation unsuccessfully.
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Non-terminals model recursive functions, we have concatenation, and angelic (∨u )
as well as demonic (∧u ) choice of urgency 0 < u ≤ h. We use lu to mean ∨u or ∧u ,
infix notation for binary choices, and u

Ì

p for u
Ì

{p}. An action is a term A or
u

Ì

P . Terms that contain actions are called active. Terms that do not contain
actions are called passive. Passive terms are words over Σ ∪ {skip, err}, and we
also call them word terms w ∈ W. To avoid brackets, we let concatenation bind
stronger than choices. Choices range over non-empty but possibly infinite sets of
terms. Infinitary syntax requires care to make sure set and game-theoretic con-
cepts remain sound. We moved the corresponding lemmas to Appendix A and B
to keep the presentation light. The motivation for infinitary syntax will be given
at the end of the section. We lift the notion of urgency from choices to program
terms and define urg : T → N by

urg(skip) = urg(err) = urg(a) = 0 urg(A) = h

urg(p.q) = max{urg(p), urg(q)} urg( u
Ì

P ) = u .

A context c[•] (of maximal urgency h over Σ and N) is a term that contains
at most one occurrence of the fresh non-terminal •. The set of all contexts is
denoted by C. The expression c[p] refers to the term obtained from c[•] by
replacing • with the term p. A term q is a subterm of p if there is a context c[•]
with p = c[q]. A subterm is called outermost if it is not enclosed by a choice. For
example, p is outermost in p.q but not in (p ∨u q).r . The leading subterm lead(p)
of a term p is defined as the outermost action with the highest urgency. If several
outermost actions have this urgency, then the leftmost of them is leading. Passive
terms do not have leading subterms. Where helpful, we will underline a subterm
that contains the leading subterm. Note that p.q implies urg(p) ≥ urg(q) and
p.q implies urg(q) > urg(p). We denote the unique context enclosing the leading
subterm lead(p) in p by enp[•] ∈ C. We have p = enp[lead(p)].

Example 1. Consider p⊆ from Figure 1. Its urgency is urg(p⊆) = 2, the leading
subterm is b ∨2 c, and the enclosing context is enp⊆

[•] = a.(al ∧1 ar). • .(b ∧1 c).
Further, al ∧1 ar is an outermost subterm of p⊆ and al is not.

2.1 Semantics

Given that our programming model has alternation, the operational semantics
of a term is not a plain transition system but a game arena [[p]] = (T, p, own, →)
in which positions are owned by player Eve or player Adam. The set of positions
is the set of all terms. The initial position is the given term. The ownership
assignment own : T → {Eve, Adam} returns the owner of the leading subterm,
own(p) = own(lead(p)). Adam owns the demonic choices, own(

u

∧
P ) = Adam, and

Eve owns the angelic choices, own( u
∨

P ) = Eve. We also give skip, err, terminals,
and non-terminals to Eve. This has no influence on the semantics as there will
be at most one move from these positions. The set of moves is defined as the
smallest relation satisfying the following rules:

p ∈ P

u
Ì

P → p A → E(A)

lead(p) → q

p → enp[q] .
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A move always rewrites the leading subterm as illustrated by Figure 2. For a
choice, it selects one alternative. For a non-terminal, it inserts the defining term.
We define succ(p) = {q | p → q}. It is worth noting that the game arena has
perfect information. Imperfect information is modeled through choices, and they
are eventually resolved.

The operational semantics is intensional in that it gives precise information
about the program state at runtime. From a programming perspective, what
matters is the result of a computation or, more generally, the observable behavior
of the program. Due to Adam’s influence, the observable behavior will rarely be
a single word but rather a language O ⊆ Σ∗. We write p ⇓ O to mean that Eve
can enforce termination and the result will be a word from O, no matter how
Adam plays. We make this precise.

Our notion of observable behavior is based on concepts from game theory. We
refer to a language O ⊆ Σ∗ as a reachability objective for the game arena [[p]].
A play in this arena is a maximal (finite or infinite) sequence of positions π =
p0, p1, . . . that starts in the given term, p0 = p, and respects the moves of the
game arena, pi → pi+1 for all i. If the play ends, the result is a word term w ∈ W.
We interpret it as an element of the monoid with zero (Σ∗ ∪ {err}, . , skip, err).
Here, skip is the unit, often denoted by ε, and err is the zero. We use =* to denote
the monoid equality. Eve wins the play when w belongs to O, meaning there
is v ∈ O so that w =* v (write w ∈ O). Otherwise, Adam wins the play. In
particular, Adam wins all infinite plays and all plays exhibiting err /∈ Σ.

A positional strategy for Eve is a function σ : T → T so that q → σ(q) for all
terms q owned by Eve that admit further rewriting. Since we are interested in
reachability objectives, we can use positional strategies without loss of general-
ity [20]. A play π is conform to σ if for all i with own(pi) = Eve and succ(pi) 6= ∅
we have σ(pi) = pi+1. Eve wins objective O, if she has a strategy σ so as to win
all plays that are conform to this strategy. This is what we denote by p ⇓ O.

Example 2. We demonstrate how to encode simulation and inclusion between A
and B from Figure 1. In p-, Eve is tasked to find a violation of the simulation
property, while Adam tries to prove it: whenever Eve takes a transition in A,
Adam tries to select a simulating transition right away in B. The term p⊆ models
inclusion: Eve selects a run in A and Adam tries to come up with a run in B with
matching observations. We define an objective O so that p- ⇓ O holds precisely
when A is simulated by B and p⊆ ⇓ O holds precisely when A’s language is
included in B’s. The objective has to make sure that the choices of transitions
form paths in the automata and that the letters actually match. The latter is
easy to check. The former can be guaranteed by interleaving OA and OB in an
alternating fashion, so a1.a2 and b1.b2 yield a1.b1.a2.b2. Details are in Section 9.

Example 3. The encodings for simulation and inclusion only differ in the terms
(al ∧1 ar).(b ∨2 c) and (al ∧1 ar).(b ∨1 c). Their semantics is given in Figure 2.
Rectangular nodes are owned by Adam, circular ones by Eve, and for rectangular
nodes with rounded corners the ownership does not matter. The objective is
O = {al.c, ar.b}. Indeed, A’s language is included in B’s, (al ∧1 ar).(b ∨2 c) ⇓/ O,
but A is not simulated by B, (al ∧1 ar).(b ∨1 c) ⇓ O.
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(al ∧1 ar).(b ∨1 c)

al.(b ∨1 c)

al.b al.c

ar.(b ∨1 c)

ar.b ar.c

(al ∧1 ar).(b ∨2 c)

(al ∧1 ar).b

al.b ar.b

(al ∧1 ar).c

al.c ar.c

Fig. 2: The game arenas [[(al ∨1 ar).(b ∧1 c)]] and [[(al ∨1 ar).(b ∧2 c)]]. O is gray.

2.2 Contextual Preorder

The notion of observable behavior is not compositional: we may have p ⇓ O if
and only if q ⇓ O for all objectives O, yet the two terms behave differently when
placed into a context. In our example, (b ∨1 c) ⇓ U if and only if (b ∨2 c) ⇓ U
for all objectives U ⊆ Σ∗. When inserting the terms into the context c[•] =
(al ∧1 ar).•, however, we have the difference discussed above. This is a common
problem, and the way out is to consider the largest congruence that lives inside
observational equivalence. It is more elegant to work with a precongruence and
define the congruence of interest as a derived notion.

Definition 1. The contextual preorder � ⊆ T × T is defined by p � q, if

∀O ⊆ Σ∗. ∀c[•] ∈ C. c[p] ⇓ O implies c[q] ⇓ O .

The O-specialized contextual preorder �O ⊆ T × T is defined by fixing O and
dropping the leading universal quantifier. The contextual equivalence is then
≃ = � ∩ �, and the O-specialized contextual equivalence is ≃O = �O ∩ �O.

In the example, (b ∨2 c) � (b ∨1 c) and so by congruence (al ∧1 ar).(b ∨2 c) �
(al ∧1 ar).(b ∨1 c). The reverse does not hold, consider context (al ∧1 ar).• and
objective {al.c, ar.b} from above. Note that p � q implies p �O q for all O.

With OTerm = Σ∗ as the objective, we can use the specialized contextual
equivalence to study the termination behavior of programs. We can also intro-
duce a letter loc so that p ⇓ OReach with OReach = Σ∗.loc.Σ∗ observes visits to
a specific location. (Non-specialized) Contextual equivalence is more precise and
takes into account all objectives. Both notions are also motivated by verification,
where contextual equivalence gives information about which information can be
abstracted away from an urgency term without an influence on the objective,
similar to how bisimilarity preserves CTL∗ properties [21].

The motivation for an infinite set of non-terminals and infinitary terms is to
model parameterized functions in a simple yet general way. The idea is to intro-
duce a non-terminal for each instantiation of the function’s formal parameters
by actual values, inspired by value passing in process algebra [22]. Another more
technical argument is that our normal form relies on infinitary syntax.

3 Full Abstraction

We define a precongruence ⊑ ⊆ T × T on program terms that neither quantifies
over contexts nor objectives but relates terms solely based on their syntactic
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structure. The relation is defined through a set of axioms that should be un-
derstood as explaining the interplay between the operators in our programming
model. The main finding is that this axiomatic precongruence coincides with
the contextual preorder, and we say that we axiomatize (in a sound and com-
plete way) the contextual preorder. This is our main theorem.

Theorem 1 (Full Abstraction 1). p ⊑ q if and only if p � q.

We have a corresponding result for the O-specialized contextual preorder.
In this setting, a complete axiomatization is considerably more difficult to ob-
tain because, intuitively, we have to understand the concatenation behavior of
language O. Our solution is partial in that we impose a side condition on the
objective to obtain completeness: it should be right-separating, a notion we will
define in a moment. Luckily, the objectives of interest OTerm and OReach are
right-separating. It is always sound to reason with the O-specialized axiomatic
precongruence.

Theorem 2 (Full Abstraction 2). p ⊑O q implies p �O q. If O is right-
separating, then also p �O q implies p ⊑O q.

We understand the concatenation behavior of an objective with the help of
the syntactic precongruence over the monoid Σ∗ ∪ {err}. It may relate terminal
words to err in case they cannot be extended to a word from the objective.

Definition 2. The syntactic precongruence induced by O on Σ∗ ∪ {err} is de-
fined by w ≤s

O v, if for all x, y ∈ Σ∗we have x.w.y ∈ O implies x.v.y ∈ O.

An objective is then right-separating, if the concatenation from left in the
above definition is not needed to distinguish words. We define ≤r

O on Σ∗ ∪ {err}
by w ≤r

O v, if for all y ∈ Σ∗ we have w.y ∈ O implies v.y ∈ O.

Definition 3 (and Lemma). Objective O is right-separating, if ≤s
O = ≤r

O.
The objectives OTerm and OReach are right-separating.

Example 4. The syntactic congruence ∼=s
O = ≤s

O ∩ ≥s
O induced by the objective

O = {al.c, ar.b} has classes Σ∗ ∪ {err}/∼=s
O

= {[skip], [al], [ar], [b], [c], [al.c, ar.b]}
plus a class for the remaining words.

Intuitively, right-separating objectives allow us to evaluate the O-specialized
contextual preorder by using contexts •.r that only append to the right. For
arbitrary objectives, we have to consider contexts s. • .r and it is difficult to
understand the interplay between high urgencies in r and low urgencies in s.

We now give the two axiomatizations and explain them on an intuitive level.
Recall that a precongruence is a reflexive and transitive relation that is preserved
when inserting related terms into the same context.

Definition 4. The axiomatic precongruence ⊑ ⊆ T × T is the least precongru-
ence satisfying the axioms in Figure 3 except (S). The O-specialized axiomatic
precongruence ⊑O on terms is the least precongruence satisfying all axioms in
Figure 3. We use ≡ for ⊑ ∩ ⊒ and ≡O for ⊑O ∩ ⊒O.
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(a) Lattice

∀i ∈ I. pi ⊑ qi

(L1)
u

Ì

{pi | i ∈ I} ⊑ u
Ì

{qi | i ∈ I}

(L2)
u
∨

i∈I u

∧
Pi ≡

u

∧

f :I→PI

u
∨

{f(i) | i ∈ I}

urg(p) ≤ u
(L3)

p ∧u (p ∨u q) ≡ p p ∨u (p ∧u q) ≡ p

(L4)
u

Ì

i∈I
u

Ì

Pi ≡ u
Ì

⋃

i∈I
Pi

urg(p) ≤ u
(L5)

p ⊑ p ∨u q

(b) Distributivity

urg(p) < u
(D1)

p.( u
Ì

Q) ≡ u
Ì

{p.q | q ∈ Q}

urg(p) ≤ u
(D2)

( u
Ì

Q).p ≡ u
Ì

{q.p | q ∈ Q}

(c) Normalization

v < u
(N)

v
∨

u
Ì

Q ≡ v
∨

v
Ì

Q

(d) Err

(B1)
err ⊑ p

(e) Monoid

w =* v
(M)

w ≡ v

(f) Fixed point

(FP)
A ≡ E(A)

∀A ∈ N. E(A){N/pN } ⊑ pA

(LFP)
B ⊑ pB

(g) Specialization

w ≤s
O v

(S)
w ⊑O v

Fig. 3: Axioms defining ⊑ and ⊑O.

With the axioms given in Figure 3a, the choice operators span a completely
distributive lattice on each urgency. The monotonicity axiom (L1) is not covered
by the precongruence but implements an infinite replacement. The axiom has
a side condition that can be found Appendix A. Due to this axiom, nodes in
our proof trees may have an infinite degree. Yet, every path is guaranteed to be
finite. To see the premise in axiom (L5), consider p = (al ∧2 ar) and context
•.(b ∨2 c). Then in p.(b ∨2 c) Eve wins while in (p ∨1 p).(b ∨2 c) she loses,
similar to Figure 2. For (L3), the reasoning is similar. As a consequence of the
lattice axioms, one can derive the dual rules of (L2) and (L5). Distributivity
(L2) states that the order of choices can be changed by considering all choice
functions f : I →

⋃

i∈I Pi with f(i) ∈ Pi for all i ∈ I, denoted by f : I → PI .

The distributivity in (D1) captures the essence of imperfect information:
concatenation to the left distributes over choice, provided the internals of the
term are invisible as the choice has a higher urgency. The distributivity from the
right in (D2) is similar but takes into account that the leading subterm for equal
urgencies is leftmost. This clean interplay between imperfect information and
choice came as a surprise and we consider these laws an important contribution.

A string with err 6∈ Σ is the most disadvantageous term for Eve, because it
belongs to no objective O ⊆ Σ∗.

The monoid axiom (M) refers to word terms w, v ∈ W. We interpret them
in the monoid Σ∗ ∪ {err} and inherit the equality there, denoted by =* above.
The equality strips brackets and skip, and interprets err as zero.

The normalization axiom (N) reflects the fact that only the outermost choice
operator determines the urgency of a term. Towards soundess, note that once
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the outer choice with urgency u is resolved, we are sure that the context to the
left has urgency strictly smaller than u and the context to the right has urgency
at most u. Hence, the inner choice is the next to be resolved, independent of
whether its urgency is u or v ≥ u.

The fixed-point axiom (FP) allows us to rewrite non-terminals to their defin-
ing terms. The axiom (LFP) allows us to rewrite non-terminals to a prefixed
point, using Knaster and Tarski’s characterization of least fixed points [23]. Here,
we let pN denote a vector of terms with one entry pA per non-terminal A ∈ N ,
and use {N/pN} for the substitution of all non-terminals by these terms.

Recall that Axiom (S) only plays a role in the definition of the specialized
axiomatic precongruence. The axiom depends on the objective O of interest,
meaning it actually is a family of axioms. The axiom relates word terms w, v ∈ W
as prescribed by the syntactic precongruence.

Example 5. We show that simulation implies inclusion in Example 2. Remember
that Eve tries to refute the relation. We prove axiomatically

b ∨2 c
(L5)

⊑ (b ∨1 c) ∨2 (b ∨1 c) = 2
∨

(b ∨1 c)
(L3), (L4)

≡
2

∧
2
∨

(b ∨1 c)
(L3)

≡ b ∨1 c .

By (L5), we have b ⊑ b ∨1 c and c ⊑ b ∨1 c, which we can apply to subterms by
congruence. The equality holds because choices range over sets. We apply (L3)
with p = q = ∨2 (b ∨1 c), apply (L4) to flatten the choices, apply (L3) once more
to remove the choices, and finally apply congruence. This yields p⊆ ⊑ p-. With
soundess of the axiomatization (Section 4), we obtain the desired p⊆ � p-. With
a normal form result (Section 5), we also show completeness (Section 6).

4 Soundness

Proposition 1 (Soundness). p ⊑ q implies p � q, p ⊑O q implies p �O q.

This section is devoted to proving Proposition 1. Proving soundness is dif-
ficult because it requires us to reason over all contexts. If p ⊑O q is an axiom,
then we need to show that c[p] ⇓ O implies c[q] ⇓ O for all c[•] ∈ C.

We first develop a proof technique for soundness that allows us to reduce
the set of contexts we have to consider, and in a second step prove the axioms
sound. To define the contexts that have to be considered, we introduce some
terminology. We say that term p is immediate for context c[•] ∈ C, if c[p] ∈ W
or c[p] is active and p contains the leading subterm in c[p], denoted by c[p]. If
this is not the case, we call p paused for c[•]. As the names suggest, immediate
terms get rewritten in the next move while paused terms do not. For example,
term 2

∨
P is immediate for •.

1

∧
Q but paused for •.

3

∧
Q and 2

∨
{•, q}. In the last

context, • is enclosed by a choice. No term is immediate for such a context.

Lemma 1 (Proof Technique). If c[p] ⇓ O implies c[q] ⇓ O for all contexts
c[•] ∈ C where at least one of p or q is immediate, then p �O q.
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Lemma 1 defines precisely the contexts we need to consider when proving
the axioms sound. Its proof relies on the following observation: a paused term
does not change the outcome of a move in the context (cf. Appendix C).

Lemma 2. Consider terms p and q that are paused for context c[•]. Then,
own(c[p]) = own(c[q]) and there is a set of contexts D ⊆ C so that succ(c[p]) =
{d[p] | d[•] ∈ D} and succ(c[q]) = {d[q] | d[•] ∈ D}.

We are now prepared to prove each axiom sound. Using Lemma 1, all proofs
share a common approach: we fix an objective and pick a context that is imme-
diate for at least one term in the axiom. Then, we unroll the game arena for a
few moves until it reveals the winning implication we are after. We restrict our
presentation to the soundness of Axiom (D1) and defer details to Appendix D.
The proofs make use of two properties of immediate terms.

Lemma 3. Let term p be immediate for context c[•]. Then we have own(c[p]) =
own(p). If urg(p) ≤ urg(q), then also term q is immediate for c[•].

Proof of Proposition 1 (Soundness). Axiom (D1): We consider binary choices
owned by Eve, the generalization to choices over arbitrary sets and also Adam’s
case are similar. For urg(p) < u, the axiom says that p.(q ∨u r) ⊑ p.q ∨u p.r and
vice versa. The goal is thus to show p.(q ∨u r) ≃ p.q ∨u p.r .

Consider an objective O and let c[•] be a context for which at least one of
p.(q ∨u r) or p.q ∨u p.r is immediate. The urgencies of both terms are u. This
means that not only one but actually both terms are immediate for c[•] and,
moreover, the owner of c[p.(q ∨u r)] and c[p.q ∨u p.r ] is Eve. The first moves in
the game arenas are thus done by the same player and have the same result:

c[p.q ∨u p.r ]

c[p.q] c[p.r ]

c[p.(q ∨u r)]

c[p.q] c[p.r ]

As a consequence, translating winning strategies becomes straightforward and
the equivalence c[p.(q ∨u r)] ⇓ O iff c[p.q ∨u p.r ] ⇓ O holds.

5 Normalization

As a first step towards completeness, we show that each term can be brought
into a normal form using our axioms. Normalization is a standard approach in
completeness proofs. The treatment of alternation and urgency is new.

The normal form eliminates non-terminals and orders the interplay between
concatenation and choice: a normal form term is a tree of height 2h (with h the
maximal urgency) that repeatedly alternates between Eve’s and Adam’s choices
while decreasing the urgency. The leaves of the tree are terminal words, skip, or
err. Inductively, we define NF0 = Σ∗ ∪ {err} and for u > 0,

ANFu = {
u

∧
P | ∅ 6= P ⊆ NFu−1} NFu = { u

∨
P | ∅ 6= P ⊆ ANFu} .
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The base case terms are all owned by Eve. In an ANFu term, Adam chooses
over NFu−1 terms. In an NFu term, Eve chooses over such ANFu terms owned
by Adam. The main result of this section is the following.

Proposition 2. There is a function nf : T → NFh so that nf(p) ≡ p for all p.

Example 6. We illustrate the normal form computation on our running example.
Let h = 2 and consider (al ∧1 ar).(b ∨2 c).

(al ∧1 ar).(b ∨2 c)
(D1)

≡ (al ∧1 ar).b ∨2 (al ∧1 ar).c

(D2)
≡ (al.b ∧1 ar.b) ∨2 (al.c ∧1 ar.c)

(L3), (L4)
≡ [∧2 ∨1 (al.b ∧1 ar.b)] ∨2 [∧2 ∨1 (al.c ∧1 ar.c)] .

Formally, we prove Proposition 2 in two steps. First, we compute a normal
form term nf(A) ≡ A for every non-terminal A ∈ N in a fixed-point iteration.
Then, we replace each non-terminal in p by its normal form. Finally, we normalize
the remaining term to obtain nf(p) ≡ p. The two steps are formalized in the next
lemma, details of the normalization can be found in Appendix E.

Lemma 4. For all p ∈ T without non-terminals there is nf(p) ∈ NFh with
p ≡ nf(p). For all non-terminals A ∈ N , there is a nf(A) ∈ NFh with nf(A) ≡ A.

6 Completeness

Proposition 3 (Completeness). p � q implies p ⊑ q. For a right-separating
objective O ⊆ Σ∗, p �O q implies p ⊑O q.

Interestingly, the completeness for the axiomatic precongruence follows from
the completeness for the specialized version. To prove this implication, we con-
sider objectives for which Axiom (S) does not add relations. Formally, we call
an objective O domain shattering, if ⊑ = ⊑O.

Lemma 5. The language w.wreverse is domain-shattering and right-separating.

The argument for completeness is this. Let O ⊆ Σ∗ be the domain-shattering
and right-separating objective from Lemma 5. We have

�
Definition

⊆ �O

Prop. 3

⊆ ⊑O

Shattering

= ⊑
Soundness, Prop. 1

⊆ � .

6.1 Completeness Proof, Specialized Case

To show Proposition 3, fix a right-separating O ⊆ Σ∗. With the normalization
in Proposition 2 and soundness of the axiomatic precongruence in Proposition 1,
it is sufficient to show completeness for terms in normal form. For p, q ∈ NFh,
we want to show that p 6⊑O q implies p 6�O q by giving a context that tells them
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apart. This, however, is difficult as it requires us to understand precisely when
the axiomatic congruence fails.

Our way out is to define a less flexible preorder that is easier to handle. The
domination preorder ⊆O only relates normal form terms of the same urgency
and owned by the same player. It is defined by induction on the urgency. For
w, v ∈ NF0, we have w ⊆O v if w ≤s

O v. For u > 0:

u

∧
P ⊆O u

∧
Q if ∀s ∈ Q.∃r ∈ P.r ⊆O s u

∨
P ⊆O

u
∨

Q if ∀r ∈ P.∃s ∈ Q.r ⊆O s

Proposition 3 holds with the following lemma, which we prove in Appendix F.

Lemma 6. For a right-separating objective O, p �O q implies p ⊆O q and
p ⊆O q implies p ⊑O q.

7 Decidability and Complexity

We study the decidability and complexity of checking the contextual preorder
and its specialized variant. To this end, we leave the setting of infinitary syntax
and call p finitary, if it refers to a finite set of non-terminals (N, E) and all defin-
ing terms E(A) and p itself are finite. We make the decision problem parametric
in the relation R to be checked, and instantiate R with ≃, ≃O, and �O:

h-DEC-R
Given: Finitary p, q over Σ, (N, E) of urgency h.
Problem: Does p R q hold?

The first finding is that already the contextual equivalence is undecidable.
The proof is by a reduction from the equivalence problem for context-free lan-
guages and the result continues to hold if we fix an alphabet with at least two
letters. A consequence is that the specialized contextual equivalence for domain-
shattering objectives is also undecidable.

Proposition 4. h-DEC-≃ and h-DEC-≃O with O domain-shattering are unde-
cidable for every h.

Recall that the language w.wreverse is domain-shattering, so already context-
free objectives lead to undecidability.

Our main result in this section is that for regular objectives the specialized
contextual preorder is decidable. We can also give the precise complexity, for
which we measure the size of the input in the expected way as |p|+|q|+|Σ|+|E |.
The size of the defining equations is |E | =

∑

A∈N 1 + |E(A)|. The size of a term
is |skip| = |err| = |a| = |A| = 1, |p.q| = 1 + |p| + |q|, and |

Ìu P | = 1 +
∑

p∈P |p|.

Theorem 3. Let h be an urgency. For every regular objective O 6= ∅, the problem
h-DEC-�O is PTIME-complete.

It is worth noting that the result does not expect the objective to be right-
separating. We can indeed decide the specialized contextual preorder �O for all
regular objectives O. Moreover, the lower bound holds no matter the objective.



Urgency Annotations for Alternating Choices 13

It is natural to define a variant h-DEC-�∗ of the problem in which also the
objective is part of the input and given as a deterministic finite automaton
(Σ, Q , i , δ, F ). In this case, we use |O| to refer to |Σ| + |Q |. The following result
shows the dramatic influence that the objective has on the complexity.

Theorem 4. h-DEC-�∗ is (2h − 1) − EXPTIME-complete.

A consequence is that we can also solve the problem of making an observation,
denoted as h-DEC- ⇓ and defined with almost the same input as h-DEC-�∗.

Corollary 1. h-DEC- ⇓ is (2h − 1) − EXPTIME-complete.

8 Upper Bound

We prove the upper bounds claimed in Theorems 3 and 4 as follows.

Proposition 5. Given finitary terms p and q and a regular objective O as a
DFA, deciding p �O q can be done in time (|p|+ |q|+ |E ||N |) ·exp2h−1(O(|O|2)).

The undecidability result in Proposition 4 shows that the normal form for
the axiomatic congruence from Section 5 is insufficient as a basis for algorithms.
The problem is that the normal form terms are typically infinite, and therefore
difficult to handle computationally. The source of infinity can be found in the
base case: already NF0 = Σ∗ ∪ {err} is infinite, and this propagates upwards.
We realize that the O-specialized axiomatic congruence admits a more refined
normal form that is guaranteed to yield finite terms (and finitely many of them).
The key idea is to factorize NF0 using Axiom (S).

We define the set of O-specialized normal form terms by induction on the
urgency. The base case SNFO

0 = Σ∗
err/∼=s

O
are classes of words in the syntactic

congruence ∼=s
O = ≤s

O ∩ ≥s
O induced by O. For u > 0, the definition is

SANFO
u = {

u

∧
P | ∅ 6= P ⊆ SNFO

u−1} SNFO
u = { u

∨
P | ∅ 6= P ⊆ SANFO

u } .

Note that since O is regular, the set SNFO
0 and so all SANFO

u and SNFO
u are

guaranteed to be finite [24]. Another aspect is that we change the alphabet to
having ∼=s

O-congruence classes as letters. This can be fixed by working with a
representative system: we represent every ∼=s

O-class by one of its elements.

We adapt the normalization process from Section 5 to compute a term in the
O-specialized normal form. Only the base case changes, for the inductive cases
we merely study the complexity. Interestingly, the overall normalization takes
time 2h-fold exponential only in the size of the objective, using the common
definition exp0(x) = x and expu+1(x) = 2expu(x).

Lemma 7. Given a finitary term p and a regular objective O ⊆ Σ∗ as a DFA,
we can compute nfO(p) ∈ SNFO

h with nfO(p) ≡O p in time (|p| + |E ||N |) ·
exp2h−1(O(|SNFO

0 |)). We have |SNFO
h | = exp2h(O(|SNFO

0 |)).
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The result already allows us to decide the O-specialized contextual preorder
as follows. Since we cannot assume the objective to be right-separating, the
algorithm cannot rely on a full abstraction result. Instead, we have to evaluate
p �O q directly, by iterating over contexts. What makes this possible is the com-
bination of our proof technique for soundness in Lemma 1 and the O-specialized
normal form just introduced. With Lemma 1, we do not have to iterate over
all contexts to show p �O q, but only over contexts of the form r . • .s. With
Lemma 7, the terms r and s can be normalized.

Corollary 2. Let O be regular and p, q finitary. Then p �O q iff for all c[•] =
r .• .s with r ∈ SNFO

h−1, s ∈ SNFO
h we have nfO(c[p]) ⇓ O implies nfO(c[q]) ⇓ O.

The algorithm formulated in the corollary is slower than the promised upper
bound by two exponents because SNFO

h contains exp2h+1(O(|O|2)) many terms.
To overcome the problem, the first step is to reduce the number of contexts that
have to be considered. The idea is to factorize the contexts along their solution
spaces. The solution space of a context is the set of terms p for which c[p] ⇓ O
holds. When checking for p �O q, the job of a context c[•] is to disprove p �O q
by showing c[p] ⇓ O and c[q] ⇓/ O. Hence, when two contexts have the same
solution space, it suffices to consider one of them.

What makes the solution space equivalence algorithmically interesting is that
(i) it is coarse enough to save an exponent and (ii) we can directly compute with
equivalence classes of contexts. The key insight behind both statements is that
the solution space of a context can be represented in a convenient way: it is the
⊑O-upward closure of a so-called characteristic term.

Definition 5. Term p is characteristic for c[•] wrt. O ⊆ Σ∗, if for all q ∈ T
we have c[q] ⇓ O if and only if p ⊑O q.

We will show that there are only exp2h(O(|O|2)) many characteristic terms
for contexts of the form r . • .s. Moreover, we can compute the characteristic
terms directly, without building up the corresponding contexts. This saves an
exponent in the complexity: we modify the algorithm in Corollary 2 to iterate
through characteristic terms rather than contexts.

We save another exponent in the runtime of our algorithm by a more com-
pact representation of the terms in O-specialized normal form. One exponent
in the size of SNFO

h is inherited from the base case, where already |SNFO
0 | =

exp1(O(|O|2)). We use the fact that each class of the syntactic congruence can be
represented by a function Q → Q between the states of the objective DFA [24].
The key idea is to see these functions as sets of state-pairs. We simulate a func-
tion, say for letter a, by letting Eve choose a state change (p, q) with δ(p, a) = q.
We thus represent the congruence class [a] ∈ Σ∗

err/
∼=s

O by an angelic choice of
urgency 1 over letters from the alphabet Q × Q . The modification propagates to
the normal form terms, and requires a simple modification of the objective. The
new objective tr(O) has a syntactic congruence with an exponentially smaller

index, namely |SNF
tr(O)
0 | = O(|O|2).

Details on the compact term representation and on how to utilize character-
istic terms are given in Appendix K.
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9 Lower Bound and Applications

We show how to reduce well-known program verification tasks to the problem of
making an observation. The first reduction justifies our complexity lower bound.

Multi-pushdown systems (MPDS). MPDS are a model for concurrent programs
with recursive threads that synchronize through a shared, finite memory [25,26].
MPDS are Turing complete [27]. For bug hunting, it is therefore common to
under-approximate their behavior by limiting the number of context switches [25].
A context is a sequence of transitions that operate only on one stack, and a con-
text switch is the moment when this stack changes. We consider multi-pushdown
games (MPDG), the alternating variant of MPDS. A b-context-bounded 2-stack
pushdown game (b-2PDG) is an MPDG with two stacks.

Theorem 5. [17,26] b-2PDG are (b − 2) − EXPTIME-complete.

Our lower bound is due to the following result that we prove in Appendix P.

Proposition 6. Given a (2h + 1)-2PDG PD, we can compute in polynomial
time an alphabet Σ, a term p and non-terminals (N, E) over Σ all of maximal
urgency h, and an objective DFA O so that Eve wins PD if and only if p ⇓ O.

Hyper model checking (HMC). Hyperproperties [18] are program properties that
refer to sets of computations, as opposed to the classical linear-time properties [2]
that refer to single computations. The corresponding logics [19] express hyper-
properties by quantifying over the computations of the program K, as in

HP = ∀w1 ∈ L(K). ∃w2 ∈ L(K) . . . Qwn ∈ L(K). w1 ⊕ . . . ⊕ wn ∈ LHP .

We use ⊕ to denote the convolution of words. The convolution expects words
of the same length (that is then chosen by the first quantifier) and forms their
letter-by-letter product, meaning LHP is a language over an alphabet Σn. The
hyper model checking problem (HMC) asks whether a given program satisfies
a given hyperproperty, denoted by K � HP. The standard way of solving HMC
is to compose the program with LHP, and then repeatedly with itself [28,29].
We show how to encode HMC into the problem of making an observation for
urgency terms. To be precise, HMC is usually defined over infinite words, but
we consider a finite-word version. The details are in Appendix M.

Theorem 6. Given K and HP, we can compute in polynomial time a term pK,HP

and an objective O so that K |= HP if and only if pK,HP ⇓ O.

Interestingly, our reduction to urgency terms even yields decidability results
for HMC over recursive programs. As HMC generalizes inclusion, which is unde-
cidable for context-free languages, the recursive case needs a restriction. We can
work with a restriction similarly liberal as in the recent positive results [30,31],
which form the decidability frontier for HMC.
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Simulation, Inclusion, and Games with imperfect information. As explained in
the introduction, urgency terms can express inclusion and simulation problems.
We now give the details of the encoding, and also add imperfect information
games to the picture. Let A = (QA, δA, iA, FA) and B = (QB, δB, iB, FB) be
non-deterministic finite automata. Let p, q range over QA and r , s , t over QB

with s 6= t . Imperfect information games (A, hd) (for a definition, refer to [14])
are played on a finite automaton A and hide the concrete states p ∈ QA from
Adam and only present him an abstraction h, using a function hd : Q → H .
Such a game is played in rounds in which Adam sees the abstraction h ∈ H of
the current state p, chooses an action a ∈ Σ, and then Eve selects a transition
from p for that action. Eve wins G when she can force the play from the initial
state iA into a final state in FA.

We give the defining equations for the non-terminals:

A⊆
p = 2

∨
{(

1

∧

(r ,a,s)∈δB

(r , a, s)).A⊆
q | (p, a, q) ∈ δA} ∪ {skip | p ∈ FA}

A-
p = 1

∨
{(

1

∧

(r ,a,s)∈δB

(r , a, s)).A
-
q | (p, a, q) ∈ δA} ∪ {skip | p ∈ FA}

Ah =
1

∧

a∈Σ

1
∨

{Ah′ . 1
∨

(p,a,q)∈δA,hd(q)=h′

(p, a, q) | h′ ∈ H} ∪ {skip | p ∈ FA}

The only difference between the encodings of inclusion and simulation is the
urgency of the angelic choice. In the case of inclusion, Adam only has to make a
demonic choice when Eve has chosen the entire word. For simulation, the players
take turns. For imperfect information games, Adam chooses the letter and Eve
chooses the abstraction of the next state that will be made visible to Adam and
the actual transition that is consistent with the letter and the abstraction. The
point is that Adam should see the abstraction but not see the transition. We
achieve this with a left-linear grammar where Eve’s choice for the next transition
will only be revealed when Adam has made all choices. By using urgency two,
we could have avoided this trick and used a right-linear model. In all cases, the
task of the objective O is to check that we have successive transitions.

Theorem 7. A⊆
iA

⇓ O if and only if L(A) 6⊆ L(B), A
-
iA

⇓ O if and only if
A 6- B, Ahd(iA) ⇓ O if and only if Eve wins (A, hd).

It would strengthen the usefulness of urgency terms if the above reductions
gave optimal complexity upper bounds. With what we have, this is true only for
imperfect information games, which are EXPTIME-complete [14]. The inclusion
problem is PSPACE-complete, but Corollary 1 only yields 3-EXPTIME upper
bound. Simulation is PTIME-complete, but Corollary 1 yields an EXPTIME upper
bound. The problem with simulation can be fixed with a different encoding that
is also natural but does not show the similarity to language inclusion. There, we
use the fact that the objective is fixed and a consequence of Theorem 3 that is
similar to Corollary 1. In the following, we close the gap for language inclusion.

We identify natural subclasses of urgency terms and study their verification
problems. In the term constructed for inclusion, for every urgency there is a
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single player that makes a choice. This is not true for simulation nor for imper-
fect information games. We call this fragment the weak urgency terms. Linear

grammars as used in A⊆
iA

, A
-
iA

, and pK,HP further reduce the complexity. The
definition of weak and linear terms can be found in Appendix O.

Theorem 8. h-DEC- ⇓ for weak, linear terms is in (h − 2)-EXPSPACE.

This yields the desired tight upper bound not only for inclusion checking,
but also for the hyper model checking of non-recursive programs [32].

Procedure summaries. Procedure summaries [33,34,35] are a standard technique
for the analysis of recursive programs. We now show how to derive procedure
summaries from our axiomatization. The benefit is that the axiomatization
guides the development of summaries, and thus reduces the moment of inge-
nuity required to come up with them.

Summaries are a closed-form representation of the call-return behavior of
a recursive procedure. For functions, such a closed-form representation would
capture the input-output behavior. In the context of linear-time model checking,
the call-return behavior is the state change that the procedure may induce on
the observer automaton. Procedure summaries are typically computed as a fixed
point over a suitable domain. We now rediscover these domains as the normal
forms for urgency terms. Our development covers the game version as well.

Pushdown games [34,35] extend recursive programs by alternation. We can
assume reachability as the winning condition because parity can be reduced to
reachability in polynomial time [36]. Let P = (QE , QA, Σ, Γ, δ, F ) be a pushdown
game with transitions δ = (δint , δpush, δpop). For convenience, we assume that
final states in F do not have outgoing transitions, but only loops that empty the
stack. We solve two verification tasks: (a) whether Eve can force the play into
a final state (b) while also producing a trace of observations from Σ accepted
by a DFA A. We model both with the same urgency grammar. The alphabet
are again state changes (p, a, q), this time of the pushdown, and the objective O
checks whether they form a path. We define non-terminals A

p
x that express the

fact that the current procedure is x and the current state is p. In the definition,
Ì

is
∨

if Eve owns the state, and
∧

if Adam owns the state, a ∈ Σ is a letter,
and x, y ∈ Γ are stack symbols:

A
p
x = 1

Ì

{(p, a, q).A
q
x | (p, a, q) ∈ δint} Ax = 1

∨
{A

p
x | p ∈ Q }

∪ {(p, a, q).A
q
y.Ax | (p, a, q, y) ∈ δpush}

∪ {(p, a, q) | (p, a, q, y) ∈ δpop} .

We observe that the normal form nf(A
p
x) = 1

∨

i∈I 1

∧
Ri is an Eve choice over a

set I followed by an Adam choice over sets Ri ⊆ Q ×Σ∗
err/∼=s

L(A)
×Q . By definition,

every element of Ri has p as the first component. Each i ∈ I corresponds to a
strategy σ that Eve can follow from state p with the top of stack being x until this
symbol is popped. An element (p, [w], q) ∈ Ri thus corresponds to a play through
the pushdown according to σ that ends in state q after x has been popped, and
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the play produces an observation v ∈ [w]. If L(A) = Σ∗, the middle part of our
summaries becomes irrelevant. This is (up to parity tracking) the domain that
Walukiewicz uses to solve pushdown games in EXPTIME [34], which matches our
complexity. For other DFA, we obtain the summaries for pushdown games with
inclusion objectives [35]. To be precise, we obtain an EXPTIME rather than a
2-EXPTIME upper bound because we assume the objective to be deterministic.

10 Related Work

Urgency annotations are related to priorities in process algebra [37]. The key
difference is that priorities preserve the program order while urgencies do not.
This out-of-order execution brings a new form of unbounded memory to the
semantics (the unresolved choices) that our axiomatization explains how to han-
dle. Also alternation [38] is not common in process algebra. Indeed, we have not
found a study of angelic and demonic choice from the perspective of contextual
equivalence. It is the special case of our work when the urgency is h = 1.

Our axiomatization is related to Salomaa’s work on language equivalence [39]
and Milner’s on bisimilarity [40]. The former reference is particularly close: our
Axioms (D1) and (D2) generalize Salomaa’s Axioms (A4) and (A5) to higher
urgencies. Also our context lemma for proving soundness has relatives in process
algebra [41]. Characteristic objects (here, contexts and terms) have appeared as
early as [42]. Our contribution is to adapt the general idea to our setting.

We showed that urgency programs can capture hyper model checking over
regular languages. Hyper model checking remains decidable if one language is
context-free and the others are regular [43]. We can model this fragment with
urgency programs as well. Urgency programs combine recursion and imperfect
information. This is interesting as the canonical pushdown games with imperfect
information [44] are known to be undecidable even under strong restrictions [45].

The goal of effective denotational semantics [46,47] is to solve verification
problems with tailor-made denotational semantics. Given a specification O, the
task is to derive a denotational semantics DO such that DO(p) answers the
question of whether program p satisfies specification O. Satisfying a specification
coincides with our notion of making an observation, p ⇓ O. The link is close.
In Appendix Q.1, we show how our axiomatization of the specialized contextual
preorder induces a denotational semantics that is effective for finitary programs.
This shows that the semantic domain can be obtained in a systematic way. The
landmark result in this field is an effective denotational semantics that captures
the higher-order model-checking problem [48]. It would be interesting to consider
it from the axiomatic point of view.

11 Conclusion and Future Work

We presented urgency annotations for alternating choices as a new programming
construct and studied the standard notions of contextual equivalence for the
resulting programs. We gave sound and complete axiomatizations and settled the
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complexity. Our findings can be used to obtain new algorithms for verification
and synthesis tasks, as we demonstrated on examples.

The next step is to extend urgency programs to infinite words. The challenge
is to find the right semantics. If we define the semantics via infinite unrollings,
then it is unclear how to ever switch to choices with lower urgency. Instead, it
seems appropriate to work with programs that contain an ω-operator and can
be rewritten a finite number of times. This, however, calls for a different set of
algebraic techniques [49].
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A Handling Infinitary Syntax

For the development of the section, we call a term an h-term when no choice
subterm has urgency higher than h and the expansion of each non-terminal is an
h-term. Infinitary syntax requires care to make sure that set theoretic concepts
remain sound. The problem lies on the unbounded nature of the choice operator.
If we were to allow choices to range over arbitrary sets of terms, the class of all
terms would no longer form a set. To see this, suppose that the class of terms with
unbounded choice were a set T. Then, we could build the term u

∨
T ∈ T, which

contradicts the Axiom of Regularity. But for our development in the paper, it is
a convenience to have T as a set and not be distracted by subtle differences of
classes and sets. For this reason, we impose a restriction on the terms, that does
not hinder our developments. It is defined over the structural depth of a term,
which is

depth(A) = depth(a) = depth(err) = depth(skip) = 0

depth(p.q) = max{depth(p) + 1, depth(q) + 1}

depth( u
Ì

P ) = sup{depth(p′) + 1 | p′ ∈ P } .

The notion of structural depth lifts naturally to defining assignments (N, E).
We let depth(E) be the smallest limit ordinal strictly greater than depth(E(A))
for all A ∈ N . So, whenever the paper mentions the set of all terms T, we refer,
in fact, to restriction TE = {p | depth(p) < depth(E)}. The set of permitted
contexts CE is defined in the same way, as contexts are defined as terms built
from (N ⊎ {•}, E). We let CE = {c[•] | depth(c[•]) < depth(E)}, and drop
the subscript from this set as well. This restriction indeed does not hinder our
development. All definitions we apply to terms can be expressed as context
free replacements and the set TE is closed under such replacements. The only
exceptions build Axioms (L1) and (LFP), for which we present side conditions
so to stay in the restricted set TE .

Lemma 8. Let (N, E) be a defining assignment to h-terms. For all p ∈ TE and
all c[•] ∈ CE , c[p] ∈ TE .

Proof. Proof is by an induction on the structure of c[•]. Let p ∈ TE and let
α = depth(E). Note that depth(p) < α. The case c[•] = p ∈ TE is clear, since
c[•] = c[p]. For the case c[•] = •, depth(c[p]) = depth(p) < α.

For the concatenative inductive case, let c[•] = q.d[•]. The case c[•] = d[•].q is
analogous. Since depth(c[•]) < α, we also have depth(d[•]) < α and depth(q) < α.
Applying the induction hypothesis yields depth(d[p]) < α. And since α is a limit
ordinal, also depth(q) + 1 < α and depth(c[p]) + 1 < α.

For the choice inductive case, let c[•] = u
Ì

{d[•]} ∪ Q. We have depth(c[p]) =
sup({depth(d[p]) + 1} ∪ {depth(q) | q ∈ Q}). This is equal to the maximum of
depth(d[p]) + 1 and sup{depth(r) + 1 | r ∈ Q}. We know that depth(c[•]) < α.
So, sup{depth(r) + 1 | r ∈ Q} ≤ depth(c[•]) < α. Per definition, we also have
depth(d[•]) < α. We apply the induction hypothesis to get depth(d[p]) < α and
due to α being a limit ordinal, depth(c[p]) < α.
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An important implication of Lemma 8 is that the successor relation is well
defined for TE . All rewriting has the form c[ u

Ì

P ] → c[p] with p ∈ P or c[A] →
c[E(A)] for some context c[•] with depth(c[•]) < depth(E). Then, the successors
have depth(c[p]) < depth(c[ u

Ì

P ]) < depth(E) for all p ∈ P , and depth(E(A)) <
depth(E) for all A ∈ N .

A.1 Axiom Side Conditions on Depth

The restriction to TE also restricts the axiom system to terms only in TE This
affects Axioms (L1) and (FP).

For Axiom (L1), note that u
Ì

TE 6∈ TE .

∀i ∈ I. pi ⊑ qi
(L1)

u
Ì

{pi | i ∈ I} ⊑ u
Ì

{qi | i ∈ I}

So to keep terms in TE , we impose the following side condition to Axiom (L1):
sup{depth(pi)+1 | i ∈ I} < depth(E) and sup{depth(qi)+1 | i ∈ I} < depth(E).
This results in u

Ì

{pi | i ∈ I} ∈ TE and u
Ì

{qi | i ∈ I} ∈ TE .
For Axiom (FP), note that TE is closed under finite substitutions, but not

under infinite substitutions. However, N is infinite, so for arbitrary pN , it is not
guaranteed that E(A){N/pN } ∈ TE .

∀A ∈ N. E(A){N/pN } ⊑ pA
(LFP)

B ⊑ pB

We need to ensure that the substituted term belongs to TE . Thus, we require
depth(E(A){N/pN }) < depth(E) for all A ∈ N . In fact, the requirement is al-
ready implicitly stated by the axiom. The precondition requires E(A){N/pN } ⊑
pB and ⊑ ⊆ TE × TE . So, depth(E(A){N/pN }) < depth(E) is already required
by the axiom implicitly.

B Strategy Tree Bounds

Let G = (V, v, own, E) be a game arena with reachability objective O ⊂ V and
σ : V → V be a winning strategy for Eve from starting position v ∈ V . Consider
the subgraph T of (V, E) reachable from v, where for all v ∈ V owned by Eve
only the successor σ(v) is part of T . Since σ is a winning strategy, all paths from
v in T must reach the objective in finitely many steps, i.e. T is a tree and every
branch is finite. We prove in a second, that this is sufficient to obtain an ordinal
α to bound the depth of T . If Eve has a strategy tree with depth α, we say that
Eve wins in α turns.

The existence of uniform positional strategies results in an important prop-
erty. If Eve wins from v ∈ V in α turns, then there must be a w ∈ E(v) from
which Eve wins in γ < β turns, if own(v) = Eve. If own(v) = Adam, Eve wins
from all w ∈ E(v) in αw < α turns.
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It remains to prove that the absence of an infinite branch is sufficient to
obtain α. Let T = (V, E) be a directed tree and αV be the smallest ordinal with
|V | ≤ |αV |.

Definition 6. A function depth : V → αV is called depth assignment when
depth(v) < depth(w) for all (v, w) ∈ E.

Note that E(v) = ∅ implies depth(v) = sup(∅) = 0.

Lemma 9. If a directed tree T = (V, E) has no infinite path then T has a depth
assignment depth : V → αV .

Proof. We prove the contraposition. Let T = (V, E) be a directed tree with root
r ∈ V . We use Tv = (Vv, Ev) for the subtree rooted in v ∈ V . The key insight is
that for all v ∈ V , where Tv has no depth assignment, there must be w ∈ Ev(v)
where also Tw has no depth assignment. To see the validity of this statement,
suppose the existence of v ∈ V where Tv has no depth assignments, while all
w ∈ E(v), Tw have depth assignments depthw. Note that all Vw are disjoint.
Then depth : Vv → αVv

is a depth assignment, where depth(u) = depthw(u) if
u ∈ Vw, and depth(v) = sup{depth(w) + 1 | w ∈ Ev(v)}. The depth property is
satisfied for all u ∈ Vw and also for v ∈ Vv. So depth : Vv → α|Vv | is a depth
assignment, which contradicts the assumption.

Let T = (V, E) have no depth assignment. We inductively construct an in-
finite sequence of nodes (v0, v1, . . .) with vi, vi+1 ∈ E and so that Tvi

has no
depth assignment. The root is v0 = r and to extend (v0, . . . , vn), where Tvn

has no depth assignment, we choose any vn+1 such that Tvn+1 has no depth
assignment either, which we have shown to exist.

C Soundness: Proof Technique

Proof of Lemma 1. Assume Eve wins O from c[p]. Then she does so in at most
β-many moves, where β is an ordinal that is guaranteed to exist by results in
Appendix B. To be clear, even for transfinite β, Eve wins each play after a finite
number of moves. The ordinal β limits the size of the game arena reachable from
c[p] when she plays according to her strategy. We show c[q] ⇓ O by transfinite
induction on β. The base case is simple, yet instructive. If β = 0 then c[p] ∈ O,
meaning c[p] ∈ W. Then p is immediate for context c[•], and the premise yields
c[q] ⇓ O.

In the inductive case, it will make no difference whether β is a limit ordinal or
a successor ordinal, so we will not distinguish the two. We have c[p] ⇓ O. If p or
q is immediate for c[•], then the premise of the lemma already tells us c[q] ⇓ O.
Therefore, assume both terms are paused for c[•]. Intuitively, we will see that
Eve can copy her strategy from c[p] to c[q] (until the inserted term becomes
immediate). Since both terms are paused for c[•], we can apply Lemma 2. It
shows that, after insertion, the owner is the same, own(c[p]) = own(c[q]), and
also gives a set of contexts D ⊆ C capturing the successors. Let own(c[p]) =
own(c[q]) = Eve. Then, there must be a context d[•] ∈ D so that Eve wins d[p]
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in β′ < β moves. By the induction hypothesis, d[q] ⇓ O. Moreover, Eve can play
c[q] → d[q] and win. If own(c[p]) = own(c[q]) = Adam, then for all d[•] ∈ D, Eve
must win d[p] in β′ < β turns. By the induction hypothesis, we get d[q] ⇓ O for
all d[•] ∈ D. This is exactly succ(c[q]), so we have c[q] ⇓ O as well.

D Soundness: Missing Axiom Proofs

Proofs of the remaining axioms. In all of the soundness proofs, we conclude with
Lemma 1 to generalize from contexts for which at least one side of the conclusion
is immediate, to all contexts. To avoid repetition, this conclusion is omitted.

Most axioms have a direct proof. Only Axioms (L1) and (LFP) require a
simultaneous induction on the proof structure. The induction is kept implicit.

Axiom (LFP): The proof makes heavy use of substitution. For the sake of
readability, we use qN for q{N/pN}. We also extend this notation to contexts
and write dN [•] for the context obtained from d[•] ∈ C by replacing all non-
terminals A ∈ N (different from •) by pA.

Assuming E(A)N ⊑ pA holds for all A ∈ N , the axiom yields B ⊑ pB .
We proceed by an (outer) induction on the ordinal height of proof trees. The

induction hypothesis yields E(A)
N � pA for all A ∈ N . We have to show B � pB .

Consider an objective O and a context d[•] for which pB or B is immediate. We
prove that d[B] ⇓ O implies d[pB ] ⇓ O with a detour. If Eve wins O from B, she
does so in β-many moves, with β an ordinal, Appendix B. We apply transfinite
induction on β to establish the following more general statement. For all contexts
c[•] and all terms p, if Eve wins O from c[p] in β moves, then she wins O from
c[pN ]. Letting c[•] = d[•] and p = B gives us the desired conclusion.

The base case β = 0 is trivial: the term c[p] must be a word term and hence
c[p] = c[pN ]. Before moving on with the inductive step, we make a remark. Since
the urgency of non-terminals is maximal, we have urg(A) ≥ urg(p) for all non-
terminals A and all terms p. Moreover, the urgency of a term is monotonic in
the urgency of its subterms, so in particular urg(q) ≥ urg(qN ) holds.

In the inductive step, let p be a term and c[•] be a context so that Eve wins O
from c[p] in β moves. We first consider the case that p is paused for c[•]. Since
urg(p) ≥ urg(pN ), Lemma 3 tells us that pN is also paused for c[•]. Similar to the
proof of Lemma 1, we can use the induction hypothesis to argue that Eve wins O
from c[pN ]. It is worth noting that in the paused case the move will change the
surrounding context, which is why we strengthened the inductive statement to
universally quantify over contexts.

Assume p is immediate for c[•]. Let q = lead(p) be the leading subterm and
recall that p = enp[q], the term can be written as the unique context enclosing the
leading subterm with the leading subterm inserted. The substitution distributes
to all subterms and we also have pN = en(p)N [qN ]. Showing that Eve wins from

c[pN ] thus means to show that she wins from c[en(p)
N

[qN ]]. Since q is leading
in p, it is a choice or a non-terminal. We begin with the choice, q = u

Ì

Q.

We argue that qN must be immediate for c[en(p)
N

[•]]. To see this, note that
p is immediate for c[•] and so q is immediate for c[enp[•]]. The substitution
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distributes over the choice and we have ( u
Ì

Q)
N

= u
Ì

{rN | r ∈ Q}. This shows
urg(q) = urg(qN ). For the outermost actions in c[enp[•]], the substitution can
only lower the urgencies.

The fact that qN is immediate for c[en(p)
N

[•]] yields

succ(c[en(p)
N

[qN ]]) = {c[en(p)
N

[rN ]] | q → r} = {c[sN ] | p → s}.

We also have succ(c[p]) = {c[s] | p → s}. Similar to the proof of Lemma 1, Eve
wins from c[s] in β′ < β turns for all/one s ∈ succ(p), depending on the owner of
c[p]. For every successor s, the induction hypothesis tells us that c[s] ⇓ O implies
c[sN ] ⇓ O. Since the owner of both c[p] and c[pN ] is the owner of the choice l,
Eve can copy her strategy.

It remains to consider the case that q is a non-terminal A. Then, c[enp[A]] can
only be played into c[enp[E(A)]] and Eve wins from this position in β′ < β moves.

By the hypothesis, c[enp[E(A)]N ] is also won by Eve. We can write this term as

c[en(p)
N

[E(A)
N

]]. The hypothesis of the outer induction yields E(A)
N � pA.

Therefore, Eve must also win from c[en(p)N [pA]] = c[enp[A]N ] = c[pN ].
Axiom (N): We only show the case v

∨
u

Ì

Q ≃ v
∨

v
Ì

Q with v < u. Like in
the previous proof, both terms are immediate for the context c[•] of interest.
The key is to note that the inner choice cannot be resolved until the outer choice
has been made. The game arenas are:

c[ v
∨

u
Ì

Q]

c[ u
Ì

Q]

· · · c[q], q ∈ Q · · ·

c[ v
∨

v
Ì

Q]

c[ v
Ì

Q]

· · · c[q], q ∈ Q · · ·

As before, translation of strategies is straightforward.
Axiom (B1): To show ⊥ � p, note that Eve never wins from a term c[⊥]

and hence the implication is trivial.
Axiom (L1): Assume pi ⊑ qi for all i ∈ I for which also pi � qi holds.

Further let u
Ì

{pi | i ∈ I} and u
Ì

{qi | i ∈ I} be valid terms (i.e. they satisfy the
depth constraints from Appendix A). Acquire c[•] for which one of these terms
are immediate. Since urg( u

Ì

{pi | i ∈ I}) = urg( u
Ì

{qi | i ∈ I}) = u, Lemma 3
tells us that both terms are immediate for c[•]. Fix an objective O ⊆ Σ∗. Let
c[ u

Ì

{pi | i ∈ I}] ⇓ O. We have that succ(c[ u
Ì

{pi | i ∈ I}]) = {c[pi] | i ∈ I}.
Then, for some i ∈ I (l = ∨) [for all i ∈ I (l = ∧)] holds c[pi] ⇓ O. Since
pi � qi, also c[qi] ⇓ O. Thus, c[ u

Ì

{qi | i ∈ I}] ⇓ O.

Axiom (L4): Let u
Ì

i∈I
u

Ì

Pi and u
Ì ⋃

i∈I Pi be terms. Let c[•] be a context
where one, and by Lemma 3 both, terms are immediate. After one move from
c[ u

Ì

i∈I
u

Ì

Pi], the resulting term is always of the form c[ u
Ì

Pi] for some i ∈ I.

Since urg( u
Ì

Pi) = u, Lemma 3 states that this term is also immediate for c[•].
Then succ(c[ u

Ì

Pi]) = {c[p] | p ∈ Pi}. This position is owned by the same player

that owns the initial position, c[ u
Ì

i∈I
u

Ì

Pi] and the position c[ u
Ì ⋃

i∈I Pi]. Then,

in two moves, this player reaches
⋃

i∈I{c[p] | p ∈ Pi} = {c[p] | p ∈
⋃

i∈I Pi} from
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c[ u
Ì

i∈I
u

Ì

Pi]. We also have succ(c[ u
Ì ⋃

i∈I Pi]) = {c[p] | p ∈
⋃

i∈I Pi}. So it is

straightforward to lift the strategies from one term to the other easily under any
objective.

Axiom (L5): Let p, q ∈ T with urg(p) ≤ u. Acquire a context c[•] for
which one of p or p ∨u q is immediate. If p is immediate for c[•], since urg(p) ≤
u = urg(p ∨u q), p ∨u q is also immediate for c[•]. Then, in any case, p ∨u q is
immediate for c[•]. Fix an objective O ⊆ Σ∗ and let c[p] ⇓ O. Since c[p ∨u q],
Eve can choose p in the inserted choice to reach c[p] and win, i.e. c[p ∨u q] ⇓ O.

Axiom (L3): Let p, q ∈ T and let urg(p) ≤ u. We will only show p ≃ p ∨u

(p ∧u q). The proof of the dual statement is analogous. Fix an objective O ⊆ Σ∗.
Acquire a context c[•] for which one of p or p ∨u (p ∧u q) be immediate. Similarly
to (L5), p ∨u (p ∧u q) is guaranteed to be immediate. Let c[p] ⇓ O. Then Eve can
play c[p ∨u (p ∧u q)] → c[p] and win, so c[p ∨u (p ∧u q)] ⇓ O as well. Let c[p] ⇓ O
not hold. Then Adam has a winning strategy from c[p], since reachability games
are determined. If Eve were to play c[p ∨u (p ∧u q)] → c[p], Adam would win from
this position. If Eve were to instead play c[p ∨u (p ∧u q)] → c[p ∧u q], Adam can
play c[p ∧u q] → c[p] and win. Thus c[p ∨u (p ∧u q)] ⇓ O does not hold.

Axiom (L2): Let
u

∧

i∈I
u
∨

Pi ∈ T. Per Axiom of choice, {f | f : I →
PI} 6= ∅ and u

∨

f :I→PI u

∧
{f(i) | i ∈ I} is well defined. Let u

∨

f :I→PI u

∧
{f(i) |

i ∈ I} ∈ T. Fix an objective O ⊆ Σ∗ and acquire a context c[•] for which
one of u

∨

f :I→PI u

∧
{f(i) | i ∈ I} and

u

∧

i∈I
u
∨

Pi is immediate. Since both terms
have urgency u, Lemma 3 states that both terms are immediate. Per defini-
tion, we have c[

u

∧

i∈I
u
∨

Pi] ⇓ O if and only if for all i ∈ I, there is a p ∈ Pi

with c[p] ⇓ O. Since we assume axiom of choice, we can apply Skolemization
to get the following equivalent statement: There is a f : I → PI where for all
i ∈ I, c[f(i)] ⇓ O. But this is equivalent to c[ u

∨

f :I→PI u

∧
{f(i) | i ∈ I}] ⇓ O. Then

c[ u
∨

f :I→PI u

∧
{f(i) | i ∈ I}] ⇓ O if and only if c[

u

∧

i∈I
u
∨

Pi] ⇓ O.

Axiom (D2): Let p, u
Ì

Q ∈ T where urg(p) ≤ u. Acquire a context for
which at least one, and per Lemma 3 both, of ( u

Ì

Q).p and u
Ì

{q.p | q ∈ Q} are
immediate. We have the owner own(c[( u

Ì

Q).p]) = own(c[ u
Ì

{q.p | q ∈ Q}]). It
follows that we have succ(c[( u

Ì

Q).p]) = {c[q.p] | q ∈ Q} due to succ(( u
Ì

Q).p) =
{q.p | q ∈ Q}. Further, succ(c[ u

Ì

{q.p | q ∈ Q}]) = {c[q.p] | q ∈ Q} as well. So
under any objective O ⊆ Σ∗, lifting the strategies from one term to the other is
straightforward.

Axiom (M): Let w, v ∈ W with w =* v. Acquire a context c[•] that is
immediate for one of w or v. Since these are both word terms, the only way one
of these terms can be immediate is if c[•] is a concatenation of terminals and •.
Then, we have c[w] =* c[v]. For an objective O ⊆ Σ∗, we also see that c[w] ⇓ O
if and only if c[v] ⇓ O.

Axiom (S): Let O ⊆ Σ∗ be an objective. Let w, v ∈ Σ∗
err be word terms

with w ⊑O v due to w ≤s
O v. Let c[•] be a context for which one of the words

is immediate. As the words have urgency zero, the context muss be a word as
well: c[•] = x. • .y (ignoring the bracketing) for x, y ∈ Σ∗

err. Assume Eve wins O
from c[w] = x.w.y. Then x.w.y ∈ O. By definition of ≤s

O, we get x.v.y ∈ O. So
Eve wins O from c[v] as well.
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Axiom (FP): Let A ∈ N . Acquire a context c[•] for which at least one of
A or E(A) is immediate. Since urg(A) = h ≥ E(A), Lemma 3 tells us that A is
guaranteed to be immediate. The term c[A] has exactly one successor, c[E(A)].
Then under any objective O ⊆ Σ∗, c[A] ⇓ O if and only if c[E(A)] ⇓ O.

E Normalization

We rely on proof rules that can be derived from the axioms. These follow from
the axioms in Figure 3. Before we address normalization, we take a brief detour
to prove the utilized proof rules correct. These will also be used in Appendix Ap-
pendix I.

∀A ∈ N. pA ⊑ A
(REP)

q{N/pN } ⊑ q

urg(p) ≤ u
(L6)

p ≡ u
Ì

p

v < u
(DN)

v

∧
u

Ì

Q ≡
v

∧
v

Ì

Q

Proof sketch. For (REP), we use (L2) and the congruence rule inductively on
the subterms. Utilizing (L3) twice yields (L6). (DN) follows from

v

∧

i∈I

u
Ì

Qi

(L6)
≡ v

∨

v

∧

i∈I

u
Ì

Qi

(L2)
≡

v

∧

i∈I

v
∨

u
Ì

Qi

(N)
≡

v

∧

i∈I

v
∨

v
Ì

Qi

(L6)
≡

v

∧

i∈I

v
Ì

Qi

E.1 Proof of Lemma 4, Part 1

The function nf(p) is defined by induction. For p being a terminal or skip, err, we
use (L6) to introduce a sequence of 2h choices over singleton sets and arrive at
a term nf(p) ≡ p in normal form. For a concatenation or choice, we recursively
normalize the operands and then invoke specialized functions that rely on the
operands being normalized:

nf(p.q) = nfconc(nf(p).nf(q))

nf( u
Ì

P ) = nfchoice( u
Ì

{nf(p) | p ∈ P }) .

Lemma 10. Let R ⊆ NFh and r = u
Ì

R. We can find nfchoice(r) ∈ NFh with
nfchoice(r) ≡ r.

Proof. Consider the proof of Lemma 12.

Lemma 11. For p, q ∈ NFh we can find nfconc(p.q) ∈ NFh with nfconc(p.q) ≡
p.q.
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Proof. We strengthen the statement and show that for all urgencies u, if we have
normal form terms p, q ∈ NFu, then we can obtain a normal form in NFu. We
proceed by induction on u. For the base case u = 0, (M) yields p.q =* r ∈ NF0.

For the inductive case, let u > 0. Then p = u
∨

i∈I u

∧
Pi and q = u

∨

j∈J u

∧
Qj .

So we can write:

p.q = ( u
∨

i∈I
u

∧
Pi).(

u
∨

j∈J
u

∧
Qj)

2×(D2)
≡ u

∨

i∈I
u

∧

p′∈Pi

p′.( u
∨

j∈J
u

∧
Qj)

2×(D1)
≡ u

∨

i∈I
u

∧

p′∈Pi

u
∨

j∈J
u

∧

q′∈Qj

p′.q′ .

We have p′, q′ ∈ NFu−1. We apply I.H. to obtain nfconc(p′.q′) ∈ NFu−1

I.H.
≡ u

∨

i∈I
u

∧

p′∈Pi

u
∨

j∈J
u

∧

q′∈Qj

nfconc(p′.q′) .

The term is not in normal form due to the two layers of u choices. We apply
Lemma 10 to obtain a normal form.

E.2 Proof of Lemma 4, Part 2

We proceed by a transfinite Kleene iteration. By induction on α, we construct
normal form terms A(α) ∈ NFh for all non-terminals A and all ordinals α. We
write p(γ) to denote p{N/N (γ)}, where N (γ) refers to a vector of terms that has
A(γ) as its A component. We let A(0) = nf(err) and for all α > 0:

A(α) = nf( h
∨

{E(A)
(β) | β < α}) .

In both cases, we rely on the normalization from Appendix E.1.
We claim that A(β) ⊑ A(α) ⊑ A for all ordinals β < α. By definition, the

alternatives available to Eve in A(β) are contained in the alternatives available
to her in A(α). The former precongruence A(β) ⊑ A(α) then follows from a simple
application of Axioms (L1), (L4) and (L5).

With a transfinite induction we show that for all ordinals α and for all non-
terminals A we have A(α) ⊑ A. For the base case, we already have A(0) ≡ err ⊑ A.
For the inductive case, let α be an ordinal so that for all ordinals β < α and all

non-terminals A we have A(β) ⊑ A. Using (REP), we see that E(A)
(β) ⊑ E(A).

So we can apply (L1) to get

h
∨

{E(A)(β) | β < α} ⊑ h
∨

E(A)
(L6)

≡ E(A)
(FP)

≡ A .

It remains to show that A ⊑ A(γ) for some ordinal γ. The largest ⊑-chain of
strictly increasing elements in NFh has size |ANFh|. Then the largest such chain
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in N → NFh has size |N ||ANFh|. As a chain forms a well-ordered set, there is
an ordinal γ having at least this size. This means we have A(γ) ≡ A(γ+1) for all
non-terminals, and

E(A)(γ+1)
(L5)

⊑ E(A)(γ) ∨h h
∨

{E(A)
(β) | β < γ}

(L4)
≡ h

∨
{E(A)

(β) | β < γ + 1} ≡ A(γ+1) ≡ A(γ) .

Applying (LFP), we get A ⊑ A(γ) for all A ∈ N .

F Completeness: Missing Proof

Proof. We focus on the former implication, the latter is simple. The implication
trivially holds for terms p that are minimal in the domination preorder. We
will need information about the shape of these minimal terms. In urgency zero,
minimal are all terms w ≤s

O err, meaning there is no chance to extend w to a
word in O. For higher urgencies u > 0, terms u

∨
P are minimal where all elements

in P are minimal. Terms
u

∧
P are minimal where an element in P is minimal.

To show the implication for terms p and q where p is not minimal, we use
characteristic contexts. Given a normal form term p, we construct a context cp[•]
so that for all normal form terms q of the same urgency as p and owned by the
same player we have:

cp[q] ⇓ O iff p ⊆O q . (1)

The implication from p �O q to p ⊆O q indeed follows. Since p ⊆O p, we obtain
cp[p] ⇓ O by Equivalence (1). The assumption p �O q now yields cp[q] ⇓ O.
Hence, again by Equivalence (1), we have p ⊆O q. For the maximal urgency, we
need a special treatment.

It remains to give the construction of cp[•]. It will have the shape •.tp where
tp is again in normal form. We proceed by induction on the urgency u and need
a special case for the maximal urgency h.
Base Case p ∈ NF0. We define

tp =
1

∧
{y ∈ Σ∗ | p.y ∈ O} .

The set is non-empty as p is not minimal. Moreover, for every normal form term
q of urgency zero, Equivalence (1) holds by the definition of ≤s

O.
Inductive Case p = u

∨
P ∈ NFu, u < h. We define

tp =
∧

u+1

{tr | r ∈ P not minimal} .

Note that we can increase the urgency because u < h. A non-minimal r is
guaranteed to exist in P by the assumption that u

∨
P itself is not minimal. To
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prove Equivalence (1), we consider u
∨

Q ∈ NFu and argue as follows:

( u
∨

Q).(
∧

u+1

{tr | r ∈ P not minimal}) ⇓ O

iff ∀r ∈ P not minimal. ∃s ∈ Q. s.tr ⇓ O

{I.H.} iff ∀r ∈ P not minimal. ∃s ∈ Q. r ⊆O s

iff ∀r ∈ P. ∃s ∈ Q. r ⊆O s

iff u
∨

P ⊆O
u
∨

Q .

The inductive case for p =
u

∧
P ∈ ANFu, u ≤ h, is similar.

Special Case NFh: Since the urgency h + 1 is not allowed, we are not able
to construct the context in the way we did above. Instead, we show that for
p, q ∈ NFh with p 6⊆O q, there is a term r ∈ ANFh where p.tr is won by Eve
and q.tr is won by Adam. This yields p 6� q.

Let p = h
∨

P and q = h
∨

Q both in NFh with p 6⊆O q. By definition of the
domination preorder, there is r ∈ P so that for all s ∈ Q we have r 6⊆O s. The
term r cannot be minimal, and hence tr is guaranteed to exist. We claim that
Eve wins O from p.tr while Adam wins O from q.tr . Note that the leading terms
are p.tr resp. q.tr . To see that Eve wins from p.tr , let her choose r ∈ P ⊆ ANFh

to reach r .tr . Since r ⊆O r , Equivalence (1) yields r .tr ⇓ O. To see that Adam
wins from q.tr , let Eve choose s ∈ Q ⊆ ANFh. As r 6⊆O s, Equivalence (1)
implies that Eve loses from s.tr .

G Completeness: Characteristic Context

The missing inductive case is p =
u

∧
P ∈ ANFu. We set

tp = u
∨

{tr | r ∈ P }.

Since p is not minimal, no element r ∈ P is minimal and hence the tr are
guaranteed to exist. To see Equivalence (1), consider

u

∧
Q ∈ ANFu:

(
u

∧
Q).( u

∨
{tr | r ∈ P }) ⇓ O

iff ∀s ∈ Q. ∃r ∈ P. s.tr ⇓ O

{I.H.} iff ∀s ∈ Q. ∃r ∈ P. r ⊆O s.

iff
u

∧
P ⊆O u

∧
Q.

H Completeness: Domain Shattering Objectives

We show Lemma 5, namely there are right-separating and domain-shattering
objectives. For |Σ| > 1, we take

O = {w.wreverse | w ∈ Σ∗} .
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For Σ = {a}, we let O = {a(n2) | n ∈ N}. It is known that these objectives have
a syntactic congruence with singleton classes. Even the syntactic precongruence
is the reflexive relation, ≤s

O = ∼=s
O.

Let O = {a(n2) | n ∈ N} if Σ = {a} and O = {w.wreverse | w ∈ Σ∗} if
|Σ| > 1. We show that for all w, v ∈ W with w 6=* v, we can find a x ∈ Σ+ with
w.x ∈ O and v.x 6∈ O. This proves that O is right separating. In particular, it
also showcases that Axiom (S) cannot relate terms w, v unless w =* v. So it also
proves that O is domain-shattering. This also shows for all w ∈ Σ+ the existence
of x with w.x ∈ O to establish the right separability of w and ⊥.

Case |Σ| = 1: Let w = ai and v = aj with i 6= j. Then set x = at2−i with

t = i+j +1. Obviously, w.x ∈ O. Suppose aj .at2−i ∈ O. Then, j + t2 − i = k2 for
some k ∈ N. So j−i = t2 −k2 = (t−k)·(t+k). i 6= j implies |t−k| ≥ 1. Note that
k, i, j ≥ 0 so we get the contradiction |j−i| < i+j < t+k < |t−k|·|t−k| = |j−i|.

Case |Σ| > 1: Let w = w0w1 . . . wn and v = v0v1 . . . vm. Let a 6= wm be
a terminal. We set x = a.a.wreverse, where a 6= w|v| if |w| > |v|, a 6= v|w|

if |v| > |w|, and a arbitrary if |w| = |v|. Suppose v.a.a.wreverse ∈ O. Then,
v.a.a.wreverse = w.a.a.vreverse. If |w| = |v|, w = v is a contradiction. Otherwise,
if |v| < |w|, we have (v.a)|v| = a 6= w|v| = (w.a)|v| for a contradiction. Similarly,

if |w| < |v|, the contradiction is (w.a)|w| = a 6= v|w| = (v.a)|w|.

I Specialized Normal Form

We now provide a sketch of the normalization algorithm with the complexity
(|p| + |E ||N |) · expO

2h−1
1 as given in Lemma 7.

We use methods from Section 5 with slight modifications. To avoid repetition,
we only note the modifications that need to be made, instead of giving a full
algorithm. The section takes the form of constructing modified normalization
functions nfO(.), nfchoiceO(.), and nfconcO(.). We provide lemmas that reference
those in Section 5. The nfchoiceO(.) and nfconcO(.) calls made by nfO(.) are
kept the same. Note that implementing nfchoiceO(.) and nfconcO(.) with time
complexity |p|·expO

2h−1 for the input term p means that nfO(q) is also constructed

in |q| · expO
2h−1 time, if q has no non-terminals. For the rest of the section, fix a

regular objective O ⊆ Σ∗, a finite set of non-terminal symbols N , and a finitary
defining assignment E : N → T.

Lemma 12 (Modifies Lemma 10). Let P ⊆ SNFO
h and r = u

Ì

P . We can
find nfchoiceO(r) ∈ SNFO

h with nfchoiceO(r) ≡O r in |r | · expO
2h−1 time.

Proof. By induction on h. Note that for normalforms in SNFO
u also have max-

imal urgency u. In any case of u we need to normalize a term r = u
Ì

i∈I
h
∨

Pi.
The harder case is

Ì

=
∧

. We apply (N) if u < h and (L2) to obtain
u
∨

f :I→PI u

∧

i∈I f(i) and utilize (L4) to combine the
u

∧

i∈I with the f(i) ∈ SANFO
u :

nfchoiceO(r) = u
∨

f :I→PI

u

∧
Qf

1 We use expO
u for expu(O(|SNFO

0 |)). Usages of ≤ and = are to be understood by
means of ∈ or ⊆.



34 Eren Keskin, Roland Meyer, and Sören van der Wall

where Qf =
⋃

{Q | f(i) =
u

∧
Q, i ∈ I}. Naively, applying Axiom (L2) requires

us to enumerate all the choice functions f : I → PI . However, we do not need to
account for all of them, because after applying (L4) for a single f , we know that

u

∧
Qf ∈ SANFO

u . Knowing this means that the distribution considers way more

functions f (namely
∏

i∈I |Pi| ≥ 2|SNFO
u |) than there can be sets Qf (|SANFO

u |).
Instead, we can use (L4) to split the application of (L2) into |I|−1 many single
applications of (L2) and keeping the size of the intermediary results bound by
|SANFO

u | = expO
2u−1: In the case of J ⊆ I with |J | = 2, i.e. constant, the

number of functions f : J → PJ is bound by |P1| · |P2| ≤ |SANFO
u |2. For such

an f (with binary co-domain) the union Qf can be computed in time |SNFO
u−1|2

as long as the terms f(j) are in normalform f(j) ∈ SANFO
u . In case of h = u,

this will be the case. Otherwise, u < h and we apply the induction hypothesis
to obtain normalforms equivalent to f(1) and f(2) before computing Qf . That
way, we compute no more than |I| ≤ |r | many (L4) for splitting, |I| many (L2)
enumerating |SANFO

u−1|2 ≤ expO
2u−1 functions f each, and for each f we apply

(L4) to create the union Qf in time |SNFO
u |2 ≤ expO

2u−2. Together (for h = u):

|I|
︸︷︷︸

(L4)

+ |I| · |SANFO
u |2

︸ ︷︷ ︸

(L2)

· |SNFO
u−1|2

︸ ︷︷ ︸

(L4),Qf

≤ |r | · expO
2u−1

In case of u < h, the right summand changes to

|I| · |SANFO
u |2

︸ ︷︷ ︸

(L2)

·(|SNFO
u−1|2

︸ ︷︷ ︸

(L4),Qf

+ 2|SNFO
h−1| · expO

2h−3
︸ ︷︷ ︸

I.H.

)

≤ |r | · expO
2h−1

Adding singleton choice operators (L6) to reobtain a term in SNFO
h costs close

to no time.

Lemma 13 (Modifies Lemma 11). For any p, q ∈ SNFO
h , we can find

nfconcO(p.q) ∈ SNFO
h with nfconcO(p.q) ≡O p.q in expO

2h−1 time.

Proof. The proof in Section 5 proceeds by an induction on urgency. We change
the base case to h = 1 and for both, base and inductive case, apply (D1)
and (D2) as in the proof of Lemma 11. The application of (D1) creates at most
|p| copies of q, and (D2) creates another |q| copies of each p′. Call the resulting
term s with |s| ≤ 2 · |p| · |q|.

In the base case, p′ and q′ belong to SNFO
0 . We employ (FP) and find an

x ∈ SNFO
0 with x ∼=s

O w.v. Finding the syntactical congruence class of w.v can

be done in time (expO
0 )

k
for some fixed k ∈ N by naively checking.

In the inductive case, we apply the induction hypothesis to normalize the
concatenative subterms p′.q′ into SNFO

h . A term in SNFO
h term is bound by size

|SANFO
h | ≤ expO

2h−1. After applying the induction hypothesis to each pair in s,

the resulting term t has size |t| ≤ 2 · |p| · |q| · expO
2h−1 = expO

2h−1. In Section 5 the
layers of choices are resolved by invoking Lemma 10. In our case, we employ the

modified Lemma 12 for another |t| · expO
2h−1 ≤ (expO

2h−1)
2

= expO
2h−1.
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Lemma 14 (Modifies Lemma 4). For any A ∈ N , we can find nf(A) ∈
SNFO

h with nf(A) ≡O A in |E | · |N | · expO
2h−1 time.

Proof Sketch. We construct an increasing chain of SNFO
h terms using the same

least fixed point construction from Section 5. The constructed term for com-

ponent A has size at most |E(A)| · (expO
2h−1)

2
. Per Lemmas 12 and 13, this

term is normalized in |E(A)| · (expO
2h−1)

3
= |E(A)| · expO

2h−1 time. So normal-

izing all components takes |E | · expO
2h−1 time. The chain converges in at most

|N | · |SANFO
h | = |N | · expO

2h−1 iterations. So the normalization process takes

|E | · |N | · expO
2h−1 time.

We complete the normalization function analogously to Section 5. To cal-
culate nfO(p) for any finitary p ∈ T with non-terminals, the algorithm first
constructs nfO(A) for all A ∈ N . This takes |E | · |N | · expO

2h−1 time. Then,
we let nfO(p) = nfO(p{N/pN }) where pA = nfO(A). The normalization takes
|p| · expO

2h−1 time per Lemmas 12 and 13. This concludes the construction of the
algorithm and thus proves Lemma 7.

J Decidability and Complexity

Proof of Proposition 4. Consider two CFG Gi = (Ni, Ei, Si), i ∈ {0, 1} over
some alphabet Σ and with disjoint sets of non-terminals N1 ∩N2 = ∅. Note that
each non-terminal has a single production rule of the shape Ei(A) = w1 | . . . | wn,
wi ∈ (N ∪ Σ)

∗
. We reproduce this non-deterministic structure by yielding the

choice to Eve. We construct the program-term grammar (N1 ∪ N2, E), where E
is defined via E(A) = 1

∨
{w1, . . . , wn} for each production rule of above shape.

Kleene iteration yields the normal form

nf(Si) = 1
∨

{
1

∧
w | w ∈ L(Gi)} ≃ 1

∨
L(Gi) .

We utilize �O = � by choosing the shattering objective O = {w.wreverse | w ∈
Σ∗}. Since �O is the reflexivity relation on Σ∗ × Σ∗, the domination pre-order
yields 1

∨
L =O

1
∨

M if and only if L = M for any L, M ⊆ Σ∗. Using Lemma 6,
Theorem 2, and that O is shattering and right-separating, L(G1) = L(G2) if and
only if S1 ≃ 1

∨
L(G1) ≃ 1

∨
L(G2) ≃ S2.

Proof of Theorem 3. We show that h-DEC-�O is PTIME-hard (wrt. log-space re-
ductions) by sketching out a reduction from the Monotonic Circuit Value Prob-
lem [50] The problem consists of assignments of boolean variables Pi≤n to ∨/∧
clauses built out of the variables Pj<i, to true, or to false. The input is accepted
if and only if the variable Pn evaluates to true. Let non-empty O ⊆ Σ∗ and let
w ∈ O. For each boolean variable Pi, the log-space Turing Machine outputs a
non-terminal Pi and a defining equation E(Pi). The machine outputs E(Pi) = w
if Pi = true, and it outputs E(Pi) = err if Pi = false. For Pi = Pj0 ∧ . . . ∧ Pjk

,
the machine outputs E(P ) =

1

∧
{Pjl

| l ≤ k}. For Pi = Pj0 ∨ . . . ∨ Pjk , it outputs
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1
∨

{Pjl
| l ≤ k}. The reduced problem instance asks whether w �O Pn. By in-

duction on i we show Pi ≡O w if Pi evaluates to true, and Pi ≡O w and if Pi

evaluates to false. Since ≡O sound, and w 6�O err (with the witnessing context
c[•] = •) this proof suffices.

For the base case, we have P0 = true or P0 = false. After applying Ax-
iom (FP), we get P ≡O w and P ≡O err respectively. For the inductive case, we
have Pi = true, Pi = false, Pi = Pj0 ∧ . . . ∧ Pjk

, or Pi = Pj0 ∨ . . . ∨ Pjk
. The first

two sub-cases are already handled in the base case. The latter two cases are dual,
so we only handle the ∧-case. Per Axiom (FP), we have Pi ≡O 1

∧
{Pjl

| l ≤ k}.
The variable Pi evaluates to true, if and only if Pjl

evaluates to true for all l ≤ k.
Let all variables evaluate to true. Induction hypothesis delivers us Pjl

≡O w and
thus Pi ≡O 1

∧
{w}. The rule Axiom (L6) tells us

1

∧
{w} ≡O w. W.l.o.g. let a

variable Pj0 evaluate to false. then induction hypothesis delivers us Pj0 ≡O err

and Pjl
≡O w or Pjl

≡O err for all 0 < l ≤ k. We have Pi ≡O 1

∧
{err} or

Pi ≡O 1

∧
{err, w}. In the former case we have Pi ≡O err per Axiom (L6).

In the latter case, the lattice axioms tell us that
1

∧
{w, err} ≡O err, and thus

Pi ≡O err.

K Upper Bound: Compact Terms Representation and

Characteristic Terms

K.1 Compact Term Representation

Recall that the idea behind our compact term representation is to translate
syntactic congruence classes [a] : Q → Q into angelic choices over state changes.
With a representative system for the syntactic congruence, we can assume the
source alphabet is Σ rather than Σ∗

err/
∼=s

O. The translation of term p over Σ is
the term tr(p) over the alphabet Q 2 defined by

tr(a) = 1
∨

{(p, q) | δ(p, a) = q} tr(err) = err

tr( u
Ì

P ) = u
Ì

{tr(p) | p ∈ P } tr(skip) = skip

tr(p.q) = tr(p).tr(q) tr(A) = A ,

and we also translate the equations, Etr(A) = tr(E(A)). The new alphabet calls
for a translation of the objective. The DFA tr(O) is obtained from O by modifying
the transitions and adding a failure state ⊥. We let tr(δ)(p, (q, r )) = r if p = q and
tr(δ)(p, (q, r )) = ⊥ if p 6= q. The accepting and initial states remain the same.
The translation is faithful when it comes to our notion of observable behavior.

Lemma 15. p ⇓ O if and only if tr(p) ⇓ tr(O).

By combining Lemma 15 and Corollary 2, we can decide the specialized con-
textual preorder p �O q by checking whether c[tr(p)] ⇓ tr(O) implies c[tr(q)] ⇓
tr(O) for all contexts tr(s).• .tr(t) with s ∈ SNFO

h−1 and t ∈ SNFO
h . The problem

with this algorithm is that, for complexity reasons, we cannot work with an ex-
plicit translation of terms in specialized normal form. To overcome the problem,
an attempt would be to generalize the above set of contexts to all s. • .t with
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s ∈ SNF
tr(O)
h−1 and t ∈ SNF

tr(O)
h . However, the set SNF

tr(O)
h contains terms over

the new alphabet Q 2 that do not result from a translation of an SNFO
h term.

Unfortunately, these extra contexts may, incorrectly so, disprove the specialized
contextual preorder of interest.

Our solution is to come up with a direct construction for the image of SNFO
h

under nftr(O) ◦ tr, the translation followed by a normalization. This is the appro-

priate subset of SNF
tr(O)
h over which we should form contexts. The idea behind

the construction is to explicitly translate the urgency 1 terms in specialized nor-
mal form, and build up the higher orders in the standard way. We define the
translated O-specialized normal form terms (with u > 1) by

TNF
tr(O)
0 = SNF

tr(O)
0 TNF

tr(O)
1 = nftr(O)(tr(SNFO

1 ))

TANF tr(O)
u = {

u

∧
P | ∅ 6= P ⊆ TNF

tr(O)
u−1 }

TNF tr(O)
u = { u

∨
P | ∅ 6= P ⊆ TANF tr(O)

u } .

The set of contexts we should iterate over is thus

Ctr(O) = {r . • .s | r ∈ TNF
tr(O)
h−1 and s ∈ TNF

tr(O)
h } .

The argumentation leads to the following algorithm for checking the specialized
contextual preorder.

Proposition 7. Let O be regular and p, q finitary. Then p �O q iff for all
c[•] ∈ Ctr(O), we have that c[tr(p)] ⇓ tr(O) implies c[tr(q)] ⇓ tr(O).

The benefit over Corollary 2 is that the translated normal form terms are in

tr(O)-specialized normal form, TNF
tr(O)
h ⊆ SNF

tr(O)
h , so we inherit the bound.

Lemma 16. |TNF
tr(O)
h | ≤ exp2h(O(|Q |2)).

K.2 Characteristic Terms

With Proposition 7, we need to iterate over 2h-exponentially many contexts.
We now eliminate another exponent by factorizing the contexts with the help
of characteristic terms. Recall that term p is characteristic for context c[•] wrt.
tr(O), if its ⊑tr(O)-upward closure is the solution space of the context: for all q
we have p ⊑tr(O) q if and only if c[q] ⇓ tr(O).

For the contexts c[•] ∈ Ctr(O) we just defined, giving Adam a choice over the
solution space yields a characteristic term:

χ(c[•]) =
h

∧
{p ∈ SNF

tr(O)
h−1 | c[p] ⇓ tr(O)} . (2)

To see that the term is characteristic indeed, we rely on the domination preorder
introduced in the completeness proof.

Lemma 17. Term χ(c[•]) is characteristic for c[•] ∈ Ctr(O) wrt. tr(O) and can
be computed in time exp2h−1(O(|Q |2)).
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Proof. To prove that χ(c[•]) is characteristic, consider term p = h
∨

i∈I h

∧
Pi in

tr(O)-specialized normal form. As p is immediate for c[•], we get c[p] ⇓ tr(O) if
and only if there is an index i ∈ I so that for all q ∈ Pi we have c[q] ⇓ tr(O). This

can be shown to be equivalent to the domination preorder h
∨

h

∧
{p ∈ SNF

tr(O)
h−1 |

c[p] ⇓ tr(O)} ⊆tr(O)
h
∨

i∈I h

∧
Pi. For the terms at hand, this domination preorder

is equivalent to
h

∧
{p ∈ SNF

tr(O)
h−1 | c[p] ⇓ tr(O)} ⊑tr(O)

h
∨

i∈I h

∧
Pi, even if the

objective is not right-separating.
To compute the characteristic term, we have to check, for every term p ∈

SNF
tr(O)
h−1 , whether c[p] ⇓ tr(O) holds. Such a check requires a normalization

of c[p], followed by a polynomial-time evaluation of the resulting term. The
normalization takes time |c[p]| · exp2h−1(O(|Q |2)), Lemma 7. The dominating

factor in |c[p]| is the size of the TNF
tr(O)
h term in the context, which is bounded

by exp2h−1(O(|Q |2)). There are exp2h−2(O(|Q |2)) terms p we have to go through.
The overall runtime is thus bounded by exp2h−1(O(|Q |2)).

Let χ(Ctr(O)) = {χ(c[•]) | c[•] ∈ Ctr(O)} denote the set of characteristic

terms. As these terms belong to SANF
tr(O)
h , we inherit the following bound.

Lemma 18. |χ(Ctr(O))| ≤ exp2h−1(O(|O|2)).

Compared to Lemma 16, there are exponentially fewer characteristic terms
than contexts. To decide p �O q, we thus intend to iterate over all x ∈ χ(Ctr(O))
and check whether x �tr(O) p implies x �tr(O) q. We will use the domination
preorder for these checks.

Lemma 19. Given p, q ∈ SNF
tr(O)
h , we can decide p ⊆tr(O) q in time |p| · |q|.

There is a last obstacle: we do not know the characteristic terms, like we did
not know the translated normal form terms above. Going through all contexts
and determining the characteristic terms is prohibitively expensive. Generaliz-

ing from χ(Ctr(O)) to SANF
tr(O)
h is incorrect. The way out is to give a direct

construction of the characteristic terms.
The key insight is that the characteristic terms satisfy the following equation,

where we have s ∈ SNF
tr(O)
h−1 , T ⊆ SANF

tr(O)
h , and c[•] = s. • . h

∨
T :

χ(c[•]) ≡tr(O) h

∧
{χ(s. • .t) | t ∈ T } . (3)

The equation follows from Equation (2), Appendix L. The impact of Equation (3)
may not be immediate: we still have to make sure to construct the characteristic

term for every set T ⊆ SANF
tr(O)
h . What the equation does is to give us an

inductive formulation of the characteristic terms which allows us to compute the
set of all characteristic terms in a fixed point. We first construct the characteristic
terms for singleton sets |T | = 1. Then we conjoin the characteristic terms as
prescribed by Equation (3) to obtain the characteristic terms for sets of size |T | ≤
2. We repeat the latter conjunction until we reach a fixed point. Throughout the
process, we work up to ≡tr(O). With Lemma 18, the sets we compute with have
size at most exp2h−1(O(|O|2)). Moreover, we are guaranteed to reach the fixed
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point after at most exp2h−1(O(|O|2)) steps. To state the correctness, define for

P ⊆ SNF
tr(O)
h−1 and Q ⊆ SANF

tr(O)
h :

X(P, Q) =
⋃

s∈P,T ⊆Q

{χ(s. • . h
∨

T )} .

Lemma 20. χ(Ctr(O)) = X(TNF
tr(O)
h−1 , TANF

tr(O)
h ). The set can be computed in

time exp2h−1(O(|O|2)).

The following proposition yields the overall algorithm.

Proposition 8. Let O be regular and p, q finitary. Then p �O q iff for all x ∈

X(TNF
tr(O)
h−1 , TANF

tr(O)
h ), we have x ⊆tr(O) nftr(O)(p) implies x ⊆tr(O) nftr(O)(q).

The domination preorder is sound for checking the axiomatic preorder even
for objectives that fail to be right-separating because we have characteristic
terms on the left. The time for computing the characteristic terms is given in
Lemma 20. The normalization is Lemma 7, and we make use of the fact that
the syntactic congruence of tr(O) has size quadratic in |Q |. By Lemma 19, the
comparison takes quadratic time. This concludes the proof of Proposition 5.

L Upper Bound: More Details on Compact Term

Representation and Characteristic Terms

In this section, we handle the omitted proofs from Section 8. Namely, we prove
Proposition 7, Lemma 15, the special case h = 1 in Lemma 20 and we justify
Equation (3).

Reasoning for Equation (3): To see Equation (3), note that by Equa-
tion (2) the characteristic term χ(c[•]) is an urgency-h choice owned by Adam

over the set of SNF
tr(O)
h−1 solutions of c[•]. This set of solutions is the union of the

SNF
tr(O)
h−1 solutions for s. • .t with t ∈ T . The reason is that the choice over T in

the context has a higher urgency than the inserted term. We can thus stratify

Adam’s choice into a choice over t ∈ T followed by a choice of the SNF
tr(O)
h−1

solutions for s. • .t. Again by Equation (2), this is precisely the right-hand side
of Equation (3).

Proofs of Lemma 15 and Proposition 7: Proofs of these statements
require us to observe the inner workings of terms. To do so cleanly, we extend the
relation =* to terms. The relation =* on terms is the smallest equivalence relation
that contains =* on W, and the equalities p.(q.r) =* (p.q).r , p.skip =* p, skip.p =* p,
p.err.q =* err for all p, q, r ∈ T. Note that this is different than Axiom (M), which
allows us to apply =* to words enclosed by arbitrary contexts. We also define
hd : T → W and tl : T → T. We let hd(p) = w ∈ W be the concatenation
of outermost terminals (including any skip and err) that appear in p before the
leftmost outermost action. If there are no such terms, hd(p) = skip. We let tl(p) =
q be the concatenation of the remaining outermost actions and commands. If no
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outmost action exists in the term, we let tl(p) = skip. Note that p =* hd(p).tl(p)
for all p ∈ T. Finally, we define a set of quasi-runs QRunw for all w ∈ Σ∗ ∪{err}.
We employ the notation QRunw for a word term w ∈ W, as a shorthand for
QRunv where v is the monoid element from Σ∗ ∪ {err}. We let QRunskip = {skip}
and QRunerr = {err}. For a word w = a0 . . . ak−1 ∈ Σ+, the set QRunw contains

all terms of the form (i , p1).(p1, p2) . . . (pn−1, pn).tr(an) . . . tr(ak−1), where i
a0→

p1 . . . pn−1
an−1
→ pn is a run in the DFA for O. So an element of QRunw runs the

DFA on the prefix of w up to n and has undetermined transitions in form of the
terms tr(ai) for the remainder of w.

We find it useful to prove a stronger version of Lemma 15.

Lemma 21. Let p ∈ T, r ∈ QRunhd(p) and O ⊆ Σ∗. Then for all q =* r .tr(tl(p)),
p ⇓ O if and only if q ⇓ tr(O).

Assuming Lemma 21 we show Proposition 7.

Proof of Proposition 7. Let O ⊆ Σ∗. Per Corollary 2, we know that p �O q holds
if and only if s.p.t ⇓ O implies s.q.t ⇓ O for all s ∈ SNFO

h−1 and t ∈ SNFO
h . We

apply Lemma 15 to see that this is equivalent to the statement tr(s.p.t) ⇓ tr(O)
implies tr(s.q.t) ⇓ tr(O) for all s ∈ SNFO

h−1 and t ∈ SNFO
h . Per definition, we

have tr(s.p.t) = tr(s).tr(p).tr(t) and tr(s.q.t) = tr(s).tr(q).tr(t). For the moment,

assume TNF tr(O)
u = {tr(r) | r ∈ SNFO

u } (up to ≡tr(O)) for all u ≥ 1 without
proof. For h > 1, this makes the previous statement equivalent with the desired

s.tr(p).t ⇓ O implies s.tr(p).t ⇓ O for all s ∈ TNF
tr(O)
h−1 and t ∈ TNF

tr(O)
h .

Now let h = 1. We show that for all s ∈ SNFO
0 and t ∈ SNFO

1 , there are

s′ ∈ TNF
tr(O)
0 and t ′ ∈ TNF

tr(O)
1 where s.r .t ⇓ O if and only if s′.tr(r).t ′ ⇓ tr(O)

for all r ∈ SNFO
1 . We can also conversely find s ∈ SNFO

0 and t ∈ SNFO
1 for all

s′ ∈ TNF
tr(O)
0 and t ′ ∈ TNF

tr(O)
1 with the same property. Then, the statement

s.p.t ⇓ O implies s.q.t ⇓ O for all s ∈ SNFO
0 , t ∈ SNFO

1 is equivalent to the

statement s′.tr(p).t ′ ⇓ tr(O) implies s′.tr(q).t ′ ⇓ tr(O) for all s′ ∈ TNF
tr(O)
0 , t ′ ∈

TNF
tr(O)
1 . Note that, we have hd(s.p.t) = s and tl(s.p.t) = p.t. Per Lemma 21,

we know that for all rs ∈ QRuns, s.p.t ⇓ O if and only if rs.tr(p.t) ⇓ O. We can

let s′ = rs = (i , p1)(p1, p2) . . . (pn−1, pn) ∈ TNF
tr(O)
0 ∩QRuns where the DFA runs

on s from i to pn and t ′ = tr(t).

Finally, we show our assumption TNF tr(O)
u = {tr(r) | r ∈ SNFO

u } (up to

≡tr(O)) for all u ≥ 1. The inclusion TNF tr(O)
u ⊆ {tr(r) | r ∈ SNFO

u } fol-
lows from the fact that tr( u

Ì

P ) = u
Ì

{tr(p) | p ∈ P } along with the def-

initions of TNF tr(O)
u and TANF tr(O)

u . The inclusion {tr(r) | r ∈ SNFO
u } ⊆

TNF tr(O)
u is proven by induction on u. For the base case, we have TNF

tr(O)
1 =

{nf(tr(r)) | r ∈ SNFO
1 } per definition. For the inductive case, the cases SNFO

u

and SANFO
u are analogous, so we only handle one. Letting u

∨
P ∈ SNFO

u , we
get nf(tr( u

∨
P )) = nf( u

∨
{nf(tr(r))} | r ∈ P ). Induction hypothesis tells us that

nf(tr(r)) ∈ TANF tr(O)
u for all r ∈ P , so u

∨
{nf(tr(r))} ∈ TNF tr(O)

u .
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The proof of Lemma 21 is more involved and relies on the following Lem-
mas 22 and 23, which we prove first.

Lemma 22. Let p, q ∈ T with p =* q. Then own(p) = own(q) and Eve wins
from p in β moves if and only if Eve wins from q in β moves.

Proof Sketch. The definition of ownership already implies own(p) = own(q) for
all p, q ∈ T with p =* q. The remainder of the statement is proven by transfinite
induction on β. The base case follows from the monoid evaluation of word terms.
We sketch out the inductive case. W.l.o.g. we can only handle one direction of
the implication. Let p =* q and let Eve win from p in β moves. In both terms,
the same i-th concatenation operand (ignoring the bracketing) will be leading.
Then, the successor sets are equal up to =* . If own(p) = own(q) = Eve, then
Eve wins from at least one p′ ∈ succ(p) in γ < β moves. Here, we can apply the
induction hypothesis to lift the strategy to q. The case own(p) = own(q) = Adam
is dual.

We cal p ∈ T headless if hd(p) = skip. For headless terms, tr(.) and succ(.)
commute.

Lemma 23. For headless p ∈ T, succ(tr(p)) = tr(succ(p)).

Proof. The proof is by (transfinite) structural induction on p ∈ T. For the base
case, we let p = A ∈ N . This is the only base case, because p is only headless if
p = A ∈ N . Per definition, we have succ(tr(A)) = {tr(E(A))} = tr(succ(A)).

The first inductive case is p = u
Ì

P . Per definition, tr( u
Ì

P ) = u
Ì

{tr(p) | p ∈
P }. And thus, succ( u

Ì

{tr(p) | p ∈ P }) = {tr(p) | p ∈ P } = tr(succ( u
Ì

P )).
The second inductive case is p = q.r . If q is not headless, then p would

not be headless. So we deduce that q must be headless. A headless term must
contain an outermost choice or a non-terminal, since terms can not be empty. So,
urg(q) ≥ 1. We observe that for all s ∈ T, urg(s) > 0 implies urg(tr(s)) = urg(s)
and urg(s) = 0 implies urg(tr(s)) ≤ 1. This is clear from the construction of tr(.):
Only the urgencies of urgency 0 subterms change. These get replaced by urgency
1 terms, unless they are err or skip.

The first case is q.r . So, we have urg(q) ≥ urg(r). When urg(r) = 0, then
urg(tr(q)) ≥ 1 ≥ urg(tr(r)). Otherwise for q to be leading, urg(q) ≥ 1 must hold
and

urg(tr(q)) = urg(q) ≥ urg(r) = urg(tr(r)) .

In either case we have tr(q).tr(r). By I.H., succ(tr(q)) = tr(succ(q)). This results
in succ(tr(q.r)) = succ(tr(q)).tr(r) = tr(succ(q)).tr(r) = tr(succ(q.r)).

Now let q.r . Since the term q is headless, r has urgency urg(r) > urg(q) ≥ 1.
Let r = s.x.t for some action x . If we are strict, we also need to handle the
cases where r equals to s.x , x.t, and x . We omit them to avoid repetition. Since
urg(x) = urg(r) > 1, the term x can only be a choice u

Ì

P or a non-terminal A.
Both of these terms are headless, so we apply the induction hypothesis and obtain
succ(tr(x)) = tr(succ(x)). Because urg(x) > urg(q.s), the leading subterm is
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tr(q).tr(s).tr(x).tr(t). Indeed, urg(tr(q.s)) ≤ max(1, urg(q.s)) and urg(tr(q.s)) <
urg(tr(x)). Finally, we derive

succ(tr(q.r)) = succ(tr(q.s.x .t))

= tr(q.s).succ(tr(x)).tr(t)

= tr(q.s).tr(succ(x)).tr(t)

= tr(succ(q.s.x .t))

= tr(succ(q.r))

Proof of Lemma 21. We show both directions by an induction on the number of
moves Eve needs to win.

Forward Direction: Let p ∈ T and r ∈ QRunhd(p). For the base case, let
Eve wins O from p in 0 moves. Then, hd(p) = p ∈ W and tl(p) = skip.
Because Eve wins, p can not contain err. Then, r ∈ QRunp must be of the
form (i , p1).(p1, p2) . . . (pn−1, pn).tr(an) . . . tr(ak−1). We know that the word w =
a0 . . . an . . . ak−1 that corresponds to p =* w has a run on the DFA for O. Per
definition of QRunp, the DFA runs w from i to pn in n − 1 steps, and Eve can
choose the remaining transitions to reach pk ∈ F .

For the inductive case, let Eve reach O from p in β moves. Per Lemma 22,
this also holds from w.q, where w = hd(p) and q = tl(p). We show that r ⇓ tr(O)
for some rw ∈ QRunw and r =* rw.tr(q). Per Lemma 22, showing this for one
such r suffices. We first observe that Eve has a strategy to reach r ′

w.tr(q) where

r ′
w ∈ QRunw. In case of urg(q) ≥ 2 we have rw = r ′

w and the leading subterm
rw.tr(q) due to urg(rw) ≤ 1 < urg(tr(q)). Otherwise, urg(tr(q)) = urg(q) = 1 (it
can’t be 0 because q = tl(p)). If rw ∈ QRunw ∩ W, we already have rw.tr(q).
So let rw ∈ QRunw \ W, i.e. urg(rw) = 1. Eve resolves each term of the form
1
∨

{(q, r ) | r ∈ δ(q, a)} for some a ∈ Σ and extend the determined part of the run
in QRunw. We know that w 6=* err, because Eve wins w.q. So, per definition of
QRunw, Eve can find fitting transitions. Exhaustive application of this strategy
rewrites rw to r ′

w ∈ QRunw ∩ W for the desired r ′
w.tr(q).

We now show r ′
w.tr(q) ⇓ tr(O). Let own(w.q) = Eve. The case own(w.q) =

Adam is dual. Remember p = w.q and w = hd(p), so we have w.q. Then,
there is a w.q′ ∈ succ(w.q) from which Eve wins in γ < β moves. Since w.q′ =*

w.hd(q′).tl(q′), Lemma 22 tells us that Eve also wins from w.hd(q′).tl(q′). We
have r ′

w.tr(hd(q′)) ∈ QRunw.hd(q′) = QRunhd(w.q′), so we can apply the induction
hypothesis to see that Eve wins from r ′

w.tr(hd(q′)).tr(tl(q′)) in γ turns. The
fact r ′

w.tr(hd(q′)).tr(tl(q′)) =* r ′
w.tr(q′) and Lemma 22 imply that r ′

w.tr(q′) ⇓
tr(O). Since q is headless, Lemma 23 tells us succ(tr(p)) = tr(succ(p)) and thus
r ′

w.tr(q′) ∈ succ(r ′
w.tr(q)). Then, we also have r ′

w.tr(q) ⇓ tr(O). This concludes
this direction of the proof.

Backward Direction: Let p ∈ T, w = hd(p), q = tl(p) and O ⊆ Σ∗. For the
base case, let Eve win rw.tr(q) in 0 moves. Then, tr(q) is a command and this is
only possible if q = skip. Since rw ∈ tr(O), the run rw is accepting in the DFA
for O. So, w = p ∈ O.
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For the inductive case, let Eve win rw.tr(q) in β moves for some rw ∈
QRunw. The first case is rw.tr(q). Then, there is a term tr(a) in rw, so Eve
can simply choose the corresponding transition in the DFA to extend rw to
r ′

w ∈ QRunw per definition of QRunw. Eve then wins from r ′
w.tr(q) in γ < β

moves. We can apply the induction hypothesis to see that Eve wins from w.q,
and per Lemma 22 from p. The second case is rw.tr(q). Let own(rw.tr(q)) = Eve.
Again, the case own(rw.tr(q)) = Adam is dual. Since q is headless, we have
succ(tr(q)) = tr(succ(q)) per Lemma 23. Then, Eve wins from some rw.tr(q′)
where q′ ∈ succ(q) in γ < β moves. Write rw.tr(q′) =* rw.tr(hd(q′)).tr(tl(q′)). As
in the previous direction, we have rw.tr(hd(q′)) ∈ QRunw.hd(q′). Per definition,
tl(q′) is headless. We can apply the induction hypothesis to get that Eve wins
from w.hd(q′).tl(q′) =* w.q′ ∈ succ(w.q). So Eve wins from w.q =* p as well,
completing the proof.

Proof of Lemma 20 for h = 1:
Preliminary Facts: Before moving on to the computation of χ(Ctr(O)) for h = 1,

we study SNF
tr(O)
0 more closely.

Lemma 24. The syntactic monoid of tr(O) is SNF
tr(O)
0 = Q 2 ∪{err, skip}. Fur-

thermore, the (p, q).(q, r ) ≡tr(O) (p, r ) and (p, q).(s , r ) ≡tr(O) err hold for all
p, q, r , s ∈ Q with q 6= s.

Proof. First we show that Q 2∪{err, skip} ⊆ SNF
tr(O)
0 , i.e. that these elements are

pairwise not equivalent. It is clear that for any (p, q) ∈ Q 2, (i , p).(p, q).(q, f ) ⇓ O,
so we get (p, q) 6�tr(O) err and thus (p, q) 6⊑tr(O) err per soundness. It is also clear
to see that for any (p, q) 6= (s , r ) ∈ Q 2, we have (i , p).(p, q).(q, f ) ⇓ tr(O) but
(i , p).(s , r ).(q, f ) ⇓ tr(O) fails to hold since p 6= s or q 6= r . skip is the neutral
element of the syntactic monoid and unless |Q | = 1 it is different from any
(p, q) ∈ Q 2.

Now, we show SNF
tr(O)
0 ⊆ Q 2 ∪ {err, skip}. These are exactly the terminal

symbols, so it will suffice to show that the set Q 2 ∪{err} is closed under concate-
nation up to ≡tr(O). Concatenations that involve err or skip elements are reduced
by Axiom (M) to an element from Q 2 ∪ {err, skip}.

It remains to show the claimed congruences. For that, let p, q, r , s ∈ Q with
q 6= s and let c[•] = s. • .t be a concatenative context with s, t ∈ W. The
first observation is that c[(p, q).(r , s)] is losing for Eve, since she can not form
a continuous run, i.e. she can not reach tr(O). Then, per Axiom (S) we get
(p, q).(s , r ) ≡tr(O) err. An accepting, continuous run needs to have only three
properties. Namely, it must start from i , it must not have discontinuities, and
it must end at some f ∈ F . But, (p, q).(q, r ) and (p, r ) are both continuous
while starting and ending at the same states. So we see that c[(p, q).(q, r )] is an
accepting run if and only if c[(p, r )] is an accepting run. Thus, (p, q).(q, r ) ≡tr(O)

(p, r ).

We define δ[w] = {(p, q) ∈ Q 2 | p
v

→ q, w =* v ∈ Σ+} for all w ∈ W without
err that are not skip.
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Lemma 25. tr(w) ≡tr(O)
1
∨

δ[w].

Proof. This is done by induction on |w|, the number of symbols contained in w.
For the base case, we have |w| = 1. Then, tr(w) = 1

∨
{(p, q) | q ∈ δ(p, w)}. For

the inductive case, let w.v ∈ W unequal to err or skip by =* . Then,

tr(w.v) = tr(w).tr(v)

≡tr(O)
1
∨

δ[w]. 1
∨

δ[v]

Applying (D1) and (D2) and flattening with (L4):

≡tr(O)
1
∨

{(p, q).(s , r ) |

(p, q) ∈ δ[w], (s , r ) ∈ δ[v]}

Using Lemma 24 and (L5) to remove inconsistent runs:

≡tr(O) {(p, q).(q, s) |

(p, q) ∈ δ[w], (q, r ) ∈ δ[v]}

≡tr(O)
1
∨

δ[w.v]

L.1 Iterating the Characteristic Terms

Recall that we have constructed TNF
tr(O)
1 to be the image of SNFO

1 under
nftr(O) ◦ tr. This poses a problem for h = 1. An Adam choice alone can not

represent the image of a SANFO
1 term under normalization. Namely, for some

1
∨

i∈I 1

∧
Pi ∈ SNF

tr(O)
1 , we might not have any p ∈ T with tr(p) ≡tr(O) 1

∧
Pi. So,

if we naively apply the construction for h = 1, we are forced to iterate over a

substantial subset of SNF
tr(O)
1 . This results in a exp2(O(|O|2)) time complexity.

For this reason, we compute χ(Ctr(O)) directly, by exploiting the Myhill-Nerode
right-precongruence on the states of the DFA.

Definition 7. For any p, q ∈ Q , we have p ≤N q if and only if for all w ∈ Σ∗,

p
w
→ f ∈ F implies q

w
→ f ′ for some f ′ ∈ F .

We extend this to pairs of states (p, p′), (q, q ′) ∈ Q 2. We let (p, p′) ≤N (q, q ′)
if and only if p = q and p′ ≤N q ′. We call a state pair (p, q) dead, if there is
no run from q to a state in F in the DFA for O. For some c[•] ∈ Ctr(O), we

call S(c[•]) = {p ∈ SNF
tr(O)
0 | c[p] ⇓ O} the solution space of c[•]. Towards

computing χ(Ctr(O)), we show two important facts that expose the relationship
between the extended ≤N and solution spaces of contexts.

First, we show that there is a context c[•] ∈ Ctr(O) for each not-dead (p, q) ∈
Q 2, where S(c[•]) is the ≤N -upward closure of (p, q).

Lemma 26. For all (p, q) ∈ Q 2 that is not dead, there is a c[•] ∈ Ctr(O) with
S(c[•]) = {(p′, q ′) ∈ Q 2 | (p, q) ≤N (p′, q ′)}.
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Proof. We claim that c[•] = (q0, p). • .
1

∧

w∈P tr(w) where P = {v | q
v

→ qf ∈ F }.
Note that P 6= ∅, because (p, q) is not dead. For (s , t) ∈ Q 2 with p 6= r , c[(s , t)] is
losing for Eve, since (q0, p).(s , t) ≡O err per Lemma 24. Now assume (p, s) ∈ Q 2.
We use Lemma 25 and get c[(p, s)] ≡tr(O) (q0, p).(p, s).

1

∧

w∈P
1
∨

Rchw. Then, Eve

wins c[(p, s)] if and only if Eve wins (q0, p).(p, s). 1
∨

Rchw for all w ∈ P . This is
equivalent to w having a run from s to some qf ∈ F for all w ∈ P , This is the
definition of q ≤N s .

Then, we show that for all c[•] ∈ Ctr(O), the solution spaces are upward
closed.

Lemma 27. Let c[•] ∈ Ctr(O) and (p, q), (p′, q ′) ∈ Q with (p, q) ≤N (p′, q ′).
Then, (p, q) ∈ S(c[•]) implies (p′, q ′) ∈ S(c[•]).

Proof of Lemma 27. W.l.o.g. let (p, q), (p, q ′) ∈ Q 2 with (p, q) ≤N (p, q ′) and
c[•] = (s , t). • . 1

∨

i∈I 1

∧

w∈Pi

1
∨

Rchw. If s 6= q0 or t 6= p no matter which (p, r )
is inserted to this context, Eve can never derive a continuous run. Now let
c[•] = (q0, p). • . 1

∨

i∈I 1

∧

w∈Pi

1
∨

Rchw and assume that Eve wins from c[(p, q)].

Then, there is an i ∈ I where for all w ∈ P , Eve wins (q0, p).(p, q). 1
∨

Rchw. So,

there is an i ∈ I where for all w ∈ Pi, there is a run q
w
→ qf for some qf ∈ F .

The latter part of the statement and (p, q) ≤N (p, q ′) implies that there also is

a run q ′ w
→ q ′

f for some q ′
f ∈ F . So, from c[(p, q ′)], Eve plays the same i ∈ I.

Let Adam play some w ∈ Pi. The resulting term is (q0, p).(p, q ′). 1
∨

Rchw. So Eve
chooses (q ′, f ′) ∈ Rchw to reach (q0, p).(p, q ′).(q ′, f ′) and win.

By applying Equation (3) along with Lemma 26 and Lemma 27, we see that

a set X ⊆ SNF
tr(O)
0 is a solution space if and only if it is an upward closure

that does not contain dead pairs. We can iterate through all left-sides p ∈ Q

and right-sides Q ′ ⊆ Q and build the upward closures, therefore solution spaces,
in exp1(O(|O|2)) time. Recall that for c[•] ∈ Ctr(O), we had χ(c[•]) =

1

∧
S(c[•])

(Equation (2)). So, we can build {
u

∧
S(c[•]) | c[•] ∈ Ctr(O)} = {χ(c[•]) | c[•] ∈

Ctr(O)} = χ(Ctr(O)) in exp1(O(|O|2)) time.

M Hyperproperties and Urgency

Hyperproperties emerged as a unifying approach to information flow and security
properties, which cannot be stated as classical safety or liveness properties on
a single trace. A hyperproperty relates traces and is formulated over a set of
traces rather than a single trace. A novel approach are logics like HyperLTL [29]
to describe hyperproperties. We will stay more general and define an n-trace
hyperproperty to be any DFA A over (Σn)

∗
. Note that we consider finite traces

rather than infinite ones. In particular, a hyperproperty takes about the relation
of traces and does so in a highly synchronized manner: A set of traces is accepted
by A ensures that they all share the exact same length. To model different
traces of the same system so that the resulting observations are synchronized is
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a common problem with hyperproperties. We will not tackle this issue here, but
assume that the traces of a system K are partitioned into sets of same length.
That means that the set of traces L(K) ⊆ Σ∗ is partitioned into sets of traces
trl(K) ⊆ Σl of length l ∈ N.

Definition 8. Let K be a system (Kripke structure) with trace-set L(K) ⊆ Σ∗.
An n-trace hyperproperty A is satisfied by K, K |= A, if there is l ∈ N such that

∃w1 ∈ trl(K)∀w2 ∈ trl(K) . . . Qwn ∈ trl(K).

n∏

i=1

wi ∈ L(A)

The definition might be non-intuitive at first glance: Only for a single length
l, the set trl(K) has to satisfy the hyperproperty. Further, every hyperproperty
begins to quantify with an ∃ quantifier. This makes it impossible to formulate
hyperproperties from the ∀∃-fragment of HyperLTL. However, the ability to
deterministically decide hyperproperties of the above shape is already sufficient
to decide any hyperproperty, including ones that start with ∀, for which we check
its negation.

We show how to model check a hyperproperty by translating the system
K and the hyperproperty A into a term p and an objective O, such that A
is satisfied by K if and only if p ⇓ O. Intuitively, we model the quantifiers in
Definition 8 by the players. Each quantifier is resolved in one level of urgency
throughout the whole term. Only then, and in knowledge of the resolution of
previous quantifiers, a player resolves the next quantifier. Formally, we define
the terms pi for i ∈ [1, n + 1] over the alphabet Σ = δ by induction:

pn+1 = skip pi =

{∨

n−i+1 δ.pi+1 i odd
∧

n−i+1 δ.pi+1 i even

The final term p is a single non-terminal p = A with E(A) = skip ∨n p1.A. This
lets Eve choose the first trace and while doing so, she also fixed the length of
the considered traces.

For the objective O, we want to capture the hyperproperty A, which already
is a DFA. For the transformation to O we only need to transform the input
alphabet from δn to δ and make sure the players choose actual traces of the
system K. Technically, for a word w ∈ (Σn)

∗
, we obtain wi ∈ Σ∗ by restricting

w to the ith component. We define the flattening flat of a word in (Σn)
∗

to Σ∗

inductively by flat(skip) = skip and flat((t1, . . . , tn).v) = t1 . . . tn.flat(v). We set
the set of correct runs on component i by Oi = {w ∈ (Σn)

∗ | wi ∈ L(K)}.

O = flat(L(A) ∩
⋂

i odd

Oi ∪
⋃

i even

Oi)

Note that |O| is linear in |A| + |K|.

Theorem 9. K |= A if and only if p ⇓ O.
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Proof. By construction, p ⇓ O if and only if there is l ∈ N with (p1)
l ⇓ O,

because unrolling A an infinite number of times yields the win to Adam.
Next we inspect the terms p(w1, . . . , wm) that can occur whenever urgency

n − m is next to be resolved. Here, wi are from trl(K) and for odd i are chosen
corresponding to the ∃-quantifiers. By construction, p(w1, . . . , wm) has shape

t1,1t2,1 . . . tm,1pm+1 . . . t1,lt2,l . . . tm,lpm+1 .

where wi = ti,1 . . . ti,l.
We prove the statement: Eve wins p(w1, . . . , wm) ⇓ O if and only if m is even

and there is wm+1 ∈ trl(K) with p(w1, . . . , wm, wm+1) ⇓ O, or m is odd and for
all wm+1 ∈ trl(K) holds p(w1, . . . , wm, wm+1) ⇓ O.

If m is even, then Eve can choose a sequence wm+1 ∈ δl to transform
p(w1, . . . , wm) into p(w1, . . . , wm, wm+1). If she chooses a word outside trl(K)
she loses due to Om+1. Thus, she wins if and only if there is wm+1 ∈ trl(K) she
can choose and p(w1, . . . , wm, wm+1) ⇓ O.

The case of m odd is similar.
Finally, n = m makes pm+1 = skip, so p(w1, . . . , wn) ⇓ O if and only if

p(w1, . . . , wn) ∈ flat(L(A)) by definition.

The complexity of checking an n-trace hyperproperty K |= A using this ap-
proach is (2n − 1) − EXPTIME bounded (Corollary 1). This is still far from
optimal, considering that n-trace hyperproperties can be decided in (n − 1) −
EXPSPACE [29]. The overhead stems from the shape of normalforms, which allow
for Adam and Eve choices in each layer of urgencies, while our approach produces
only one type of non-determinism for each urgency. We intend to investigate this
special case in a separate study.

N Model Checking Hyperproperties for Recursive

Programs

Checking hyperproperties on pushdown systems is known to be undecidable in
the general case [43]. But showing it undecidable does not satisfy the desire to
check recursive programs against hyperproperties. Indeed, a first approach was
proposed directly in [43], where one type of quantifier has to work with finite
state approximations instead of the actual system. We take a different route to
restrict the general setting. To motivate the restriction, consider the algorithm
in Listing 1.1 for multiplication of high-bit numbers.

1 bit [] KM(bit [] x, bit [] y) {

2 if ( len(x) < 64) return (int) x * (int) y;

3

4 mid = len(x) / 2;

5 x1 = x[: mid ];

6 y1 = y[: mid ];

7 x2 = x[mid +1:];

8 y2 = y[mid +1:];
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9

10 z2 = KM(x1 , y1);

11 z0 = KM(x2 , y2);

12 z1 = KM(x1 + x2 , y1 + y2) - z2 - z0;

13

14 return (z2 << 2mid ) + (z1 << mid ) + z0;

15 }

Listing 1.1: Karatsuba multiplication.

The algorithm performs a high-bit multiplication of two numbers x and y. In-
stead of naively multiplying 64-bit windows of the bit streams, the algorithm
recursively splits the inputs in half. It performs 3 multiplications on the half-
sized integers and adds them together for the final result. The actual algorithm
needs some more care for bit-overflows, but we shall ignore it here.

Algorithms like Listing 1.1 are used by security protocols like OpenSSL [51].
A known weakness of security protocols are timing-based attacks [52,53]. In
these attacks, one does not run the program once to derive a secret. Instead, we
measure its execution time over multiple runs with different controllable inputs
and deduct secret values used by the program from the measured execution
times. So, safety from timing attacks can be obtained by requiring a 2-trace
hyperproperty on KM: For all traces w, v of KM, their execution time does not
differ. We do not go into modelling details of how to phrase this property as a
DFA A. But we make one crucial discovery when we want to compare multiple
runs of the Karatsuba algorithm: Its recursion depth is only dependent on the
length of x and y, a parameter that is very often public knowledge. Even more
important, runs of different recursion depth have close to no chance for a similar
execution time. The previously stated hyperproperty would very likely not be
satisfied. But when the recursion depth parameter is usually known, we instead
want to ask for a different hyperproperty to hold: For all recursion depths d, and
for all traces w, v with recursion depth d, their execution time does not differ.
More generally speaking, the traces w and v agree on their recursive structure.
We utilize this observation and restrict our check for a hyperproperty A to sets
of traces that agree on their recursive structure.

N.1 Recursive Programs

We consider the following simple language, where we abstract away from the
actual commands and focus on the recursion principle of the language.

c ::= a | f() | c.c | if e c:c

f ::= f() -> c.return

We have commands a ∈ Σ to modify the state, function calls f() and concatena-
tion. Parameters and return values are passed to/from f by state-manipulation.
A program P = (F , E) is a set of function symbols F with a distinguished initial
function main ∈ F and the function definitions E .
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N.2 Semantics and Recursion Structure

We assume the domain of booleans D = [V → B]. The semantics are kept
arbitrary for expressions [[e]] : D → B and commands [[a]] : D → D. Semantics
of function calls and concatenation are as expected. if-statements branch left
on non-zero evaluation and right on zero. For the further development, we also
require a special command assume e ∈ Σ. Its semantics operate on a fresh
variable η and are tuned to observe whether an assume command failed.

[[assume e]](d) =

{

d [[e]](d) = true

d[η 7→ true] [[e]](d) = false

A branching of P is a finite tree t (a prefix closed subset of N∗) with a labelling
cmd. The labelling assigns nodes of t commands a, function calls f, and return

statements. The root node is labeled with cmd(ε) = main. Nodes tn labelled by
cmd(tn) = a or return are leaves. A cmd(tn) = f(n)-labelled node has children
corresponding to one branch of their body c. The set of branches br(c) is

br(a) = {a} br(f()) = {f} br(c1.c2) = br(c1).br(c2)

br(if e c1:c2) = assume e.br(c1) ∪ assume !e.br(c2)

So if w ∈ br(c) is the chosen branch, then tn has |w| children labelled by the
corresponding a, f, or return in w.

A trace of P is a pair (cmd, st) where cmd is a branching with domain t and
st : t → D is a state assignment. Every node tn is labelled by st(tn) ∈ D, the state
of the program before execution of cmd(tn), st(ε) ∈ D is the input state. Consider
node tn with cmd(tn) = f, so the children are one branch of its defining body.
Its leftmost child tn.0 inherits the state, st(tn.0) = st(tn). The rightmost child
tn.m has label cmd(tn.m) = return and yields back [[f]](st(tn)) = st(tn.m).
Intermediate children tn.i just carry out their semantics to the next node by
st(tn.i + 1) = [[cmd(tn.i)]](st(tn.i)).

A recursion structure r for P is a tree labelling r : t → F . The internal of a
tree t is the set int(t) = {tn | tn.0 ∈ t}.

Definition 9. A branching cmd has recursion structure r if int(dom cmd) =
dom r and cmd and r coincide on dom r.

The recursive structure thus identifies runs that differ only in st and the
actual commands executed, but the function calls are exactly the same. We say
(cmd, st) is an r-trace when cmd has recursion structure r. A recursion structure
r is proper, if there is an r-trace of P .

N.3 Checking Hyperproperties for similar Recursion Structure

We define the yield yld(t) of a tree as usual. The set of trace-observations with re-
cursion structure r is the set trr(P) = {yld(cmd) | (cmd, st) is an r-trace of P} ⊆
Σ∗.
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Definition 10. Let A be an n-trace hyperproperty. A program P satisfies A,
P |= A, if there is a proper recursion structure r with

∃w1 ∈ trr(P)∀w2 ∈ trr(P) . . . Qwn ∈ trr(P).

n∏

i=1

wi ∈ L(A)

To present our approach, we assume that programs are prefix-branching.
We call a program P prefix-branching when function calls are never succeeded
by commands a ∈ Σ. Formally, we assume the program code stems from the
following, slightly different grammar:

f ::= f() | f .f

c ::= a | c.c

pb9c ::= f | c.pb9c | if e pb9c:pb9c

f ::= f() -> pb9c.return

Note, that this is not only a presentational decision. While every program P
has an equivalent representation in prefix-branching form, the translation incurs
more functions and thus, fixing a recursion structure may fix more behavior (e.g.
branching beyond function calls) than desired. This means that we actually re-
strict our class of programs by enforcing prefix-branching. We do not exactly
know, how impactful the restriction is for practical code, but our example (List-
ing 1.1) exerts the desired structure (up to parameter passing).

Theorem 10. P |= A is decidable for prefix-branching P.

Similar as for the finite state case, we will translate P and A into a term p and
an objective O. The intent is to first fix a recursion structure, and then replay
the call of a function f with function body c by the rewriting of a non-terminal
f into a term p(f). Term p(f) basically chooses the branch through c. For prefix-
branching, a branch is a word from Σ∗F∗. With a fixed recursive structure also
the sequence of function calls in c is fixed. For a fixed sequence of function calls
f = f1 . . . fm the set of available prefixes is captured by brf (c) ⊆ Σ∗ with

brf (c).f = br(c) ∩ Σ∗.f .

We assume that all command prefixes (the Σ∗ part) in brf (c) share the same
length, brf (c) ⊆ Σl for some l ∈ N. Similar to the finite state case this is a
modelling issue for synchronization towards A. It can be achieved by introducing
skips to branches too short. Since br(c) is finite, there is only a finite set of
occurring function call sequences f (c) = {f | brf (c) 6= ∅}. Finally, we define p(f)
in a term game (F , E) with E(f) = p(f).

pc,f
n+1(w1, . . . , wn) = flat(w1, . . . , wn)

pc,f
i (w1, . . . , wi−1) =

{∨n−i+1
wi∈brf (c) pc,f

i+1(w1, . . . , wi) i odd
∧n−i+1

wi∈brf (c) pc,f
i+1(w1, . . . , wi) i even

p(f) = n
∨

f ∈f (c)

pc,f
1 ().f
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It remains to model the objective O. As before, we construct sets Oi ⊆ (Σn)
∗

for i ∈ [1, n].

O = flat(L(A) ∩
⋂

iodd

Oi ∪
⋃

ieven

Oi)

Oi = {w ∈ (Σn)∗ | [[wi]](η) = true}

A command sequence w ∈ Σ∗ operates on the specific finite domain D. These
language is regular because D is finite.

Theorem 11. main ⇓ O if and only if P |= A.

Proof Sketch. Notice that the set of all reachable word terms from pc,f
1 is ex-

actly flat(brf (c)n). So by construction, playing from main until the term has
no more non-terminals yields a term pr for some recursion structure r, where
the reachable word terms form precisely the set flat(brr(P)n), where brr(P) =
{yld(cmd) | cmd is an r-branching}. As before, the alternative is that there is
an infinite rewriting of non-terminals, in which case Eve loses. Thus, main ⇓ O
if and only if there is r such that pr ⇓ O.

Next we again inspect the terms p(w1, . . . , wm) that can occur whenever
urgency n − m is next to be resolved (at first, we have pr = p() with m = 0).
This time, wi are from trr(P) and for odd i are chosen corresponding to the
∃-quantifiers. By construction, p(w1, . . . , wm) has shape

pc1,f 1

m+1 (w1
1 , . . . , w1

m). . . . .pcl,f l

m+1(wl
1, . . . , wl

m) ,

where c1 . . . cl is the depth-first left to right traversal of r.
We prove: p(w1, . . . , wm) ⇓ O if and only if m is even and there is wm+1 ∈

trr(P) with p(w1, . . . , wm, wm+1) ⇓ O, or m is odd and for all wm+1 ∈ trr(P)
we have p(w1, . . . , wm, wm+1) ⇓ O.

If m is even, then Eve can choose a sequence of branches wi
m+1 ∈ brf i (ci)

which together form the yield of a branching wm+1 = w1
m+1 . . . wl

m+1 ∈ brr(P).
She does so by transforming p(w1, . . . , wm) into p(w1, . . . , wm, wm+1). If she
chooses a branching which has no trace wm+1 /∈ trr(P) she loses due to Om+1.
Thus, she wins if and only if there is wm+1 ∈ trr(P) to choose and we have
p(w1, . . . , wm, wm+1) ⇓ O. The case of m odd is similar.

The final case, where n = m holds, implies that the immediate terms are

pci,f i

m+1(wi
1, . . . , wi

m) = flat(wi
1, . . . , wi

n) and by definition of ⇓ for word terms,
p(w1, . . . , wn) ⇓ O if and only if p(w1, . . . , wn) ∈ flat(L(A)).

O Specialized Decision Algorithm for Weak Terms with

Linear Grammars

In this section, we show that a certain fragment, weak linear grammars/terms,
admits more efficient decision algorithms. For maximal urgency h, the complexity
goes down from 2h − 1 − EXPTIME to (h − 2) − EXPSPACE. In the following, we
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first build up to the definition of weak linearity. Then, we show how observations
in linear terms with weak linear grammars can be decided in (h−2)−EXPSPACE.

The weak fragment of urgency imposes a restriction on available choice oper-
ators per urgency. But as Axiom (N) suggests, choice operators can potentially
combine to mimic the effect of disallowed choice operators. For example, let ∨1

be disallowed, however let ∧1 and ∨2 be both allowed. Then, we observe

∧1 (p ∨2 q)
(N)
≡ ∧1 (p ∨1 q) ≡ (p ∨1 q)

We avoid this effect by further restricting the structure of weak terms. To this
end, we define the internal urgency of a term. Intuitively, the internal urgency
inurg(p) of a term p is the largest urgency that appears in a choice operator.

inurg(p lu q) = max{inurg(p), inurg(q), u} inurg(p.q) = max{inurg(p), inurg(q)}

The internal urgency of non-terminals requires a more subtle definition. This
is because for A ∈ N , even if the term E(A) does not contain choice operators
from a certain urgency, E(A) may invoke some other B for which E(B) might
recreate that urgency. To obtain a sound definition, we have to consider E(A)
for all A ∈ N at once. We define inurg(A) for each A ∈ N to be the smallest
assignment that satisfies inurg(A) = inurg(E(A)), along with the properties of
inurg(.) defined above. Intuitively, this means that non-terminals with internal
urgency u can only use choice operators of urgency u and non-terminals with
internal urgency at most u. With this at hand, we define urgency-alignment.
Intuitively, urgency-alignment of p requires that the urgency of all terms deriv-
able not greater than urg(p). Formally, we use an inductive definition. Terms
p = A or p ∈ Σ are always urgency-aligned. A term p = q.r is urgency-aligned
if q and r are both urgency aligned, and a term p = q lu r is urgency aligned
if both q and r are urgency-aligned with inurg(q), inurg(r) ≤ u. A grammar is
urgency-aligned if E(A) is urgency-aligned for all A ∈ N .

We are now ready to define weakness and linearity. We say that a term p is
weak, if it, and its grammar are urgency-aligned, with p and E(A) for all A ∈ N
only containing choice operators from {∨u | u even}∪{∧u | u odd}. Weak terms are
normalized into (O-specialized) weak normal forms WNFu in (u−1)−EXPTIME

Lemma 28. The base case WNF0 = SNFO
0 stays the same. For positive urgencies,

odd u and even v:

WNFu = {
v

∧
P | ∅ 6= P ⊆ WNFu−1} WNF v = { u

∨
P | ∅ 6= P ⊆ WNFu−1}

Linearity restricts the recursive behaviour of the term and the grammar. The
syntactic construction of a linear term l is given below, where p represents an
arbitrary term that does not contain non-terminals. We call a grammar (N, E)
linear if E(A) is linear for all A ∈ N .

l ::= A | p | l lu l | l.p | p.l
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O.1 Weak Normal Form

We present a slightly modified normalization algorithm that takes advantage of
the restricted expressiveness of weak grammars and weak terms. More specif-
ically, we modify the functions nfchoiceO(.) and nfconcO(.) to this end. The
modified functions return terms with urgencies no larger than the urgency of
the input and preserve weakness. The proofs remain largely the same. The nor-
malization process of non-terminals remains the same in relation to nfchoiceO(.)
and nfconcO(.). In this case, we extract upper bounds by employing the lattice
height of WNFh. We prove the lemma below in this section. Note that for h ≥ 2,
the power .5 gets absorbed by O(.).

Lemma 28 (Modifies Lemma 7). Given a weak term p, a weak grammar
(N, E), and a regular objective O ⊆ Σ∗ given as a DFA, we can compute
nfO(p) ∈ WNFh with nfO(p) ≡O p in time (|p| + |E ||N |) · exph−1(O(|SNFO

0 |5)).

We first handle nfchoiceO(.).

Lemma 29 (Modifies Lemma 10). Let P ⊆ WNFu, and r = u
Ì

P . We can
construct its normalform nfchoiceO(r) ∈ WNFu with nfchoiceO(r) ≡O r in time
O(|r |) ≤ exph−1(O(|SNFO

0 |)).

Proof. We know for each p′ ∈ P we have p′ = u
Ì

Qp′ . We simply construct

the union r ′ = u
Ì ⋃

p′∈P Qp′ in time O(|r |) ≤ exph−1(O(|SNFO
0 |)). We observe

r ≡ r ′ by (L4). This concludes the proof.

Lemma 30 (Modifies Lemma 11). For any p, q ∈ WNFu, we can find
nfconcO(p.q) ∈ WNFu with nfconcO(p.q) ≡O p.q in time exph−1(O(|SNFO

0 |4)).

Proof. The base case h = 1 is handled similarly to the inductive case, so we only
show the inductive case. We first use the distribution axioms on the concatena-
tion.

p.q = ( u
Ì

P ).( u
Ì

Q)

(D2)
≡ u

Ì

p′∈P

p′.( u
Ì

Q)

(D1)
≡ u

Ì

p′∈P

u
Ì

q′∈Q

p′.q′ .

The resulting term allows for an application of the induction hypothesis on the
subterms with lower urgency for h > 1.

I.H.
≡ u

Ì

p′∈P

u
Ì

q′∈Q

nfconcO(p′.q′) .

The distribution causes the term to jump to at most the square of its previ-
ous size. In any case, there are at most exph−1(O(|SNFO

0 |))2 choice operands
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of lower urgency. For h = 1, the concatenation is resolved by monoid multipli-
cation which takes O(|SNFO

0 |)2 time. This results in an overall complexity of
exph−1(O(|SNFO

0 |))4. For h > 1 we employ the induction hypothesis and see

that the normalization of each subterm takes exph−2(O(|SNFO
0 |))2 time. So in

total we again need at most exph−1(O(|SNFO
0 |))4 steps.

Lemma 28 follows as a corollary of two observations. First, each iteration of
the least fixed point calculation will require at most |E | · exph−1(O(|SNFO

0 |))4

steps for normalization. Second, we only need |N | · |WNFh−1| iterations to-

wards a fixed point, since the height of the lattice WNF
|N |
h is bounded by this

number. Replacing the non-terminals in p by their normalizations, the term
grows by at most a factor of exph−1(O(|SNFO

0 |)). This is then normalized in

|p| · exph−1(O(|SNFO
0 |))5. Resulting in an overall time complexity of at most

(|p| + |E ||N |) · exph−1(O(|SNFO
0 |5)).

O.2 Deciding the winner for weak linear terms

The main claim of the section is given in the lemma below.

Lemma 31. Let (N, E) be a weak linear grammar with maximal urgency h, p
a weak linear term, and O ⊆ Σ∗ a regular objective. Then p ⇓ O can be decided

in (max{|E |2, |p|2}.|E |.|N |.exph−2(O(|SNFO
0 |)))

4
space.

We fix a weak linear grammar (N, E) with maximal urgency h, and a regular
objective O for the rest of this section. A naive normalization of p into WNFh

gives us a complexity of (h − 1) − EXPTIME Lemma 28. Here, the size of the
normal form terms is the main bottleneck, which can grow up to exph−1(O(|O|)).
To circumvent this problem, the algorithm avoids a complete normalization.
Instead, it aims to non-deterministically guess a small-size portion q ∈ WNFh−1

of the normalization, which suffices to show p ⇓ O. The existence of this is
guaranteed by the lemma below. Because of it admits a direct check, we use the
domination preorder ⊆O instead of ⊑O or �O.

Lemma 32. Let p be a weak term. Then, there is a q ∈ WNFh−1 with ∨h q ⊆O

nfO(p), if h is even and ∧h q ⊇O nfO(p) if h is odd, where p ⇓ O if and only if
q ⇓ O.

Proof. Assume h is even. The case with odd h is dual. Let p be a weak term.
Then, there is a term p′ ∈ WNFh with nfO(p) = p′. The definition of WNFh

tells us p′ = h
∨

P for some P ⊆ WNFh−1. We observe that p′ ⇓ O holds if
and only if there is a r ∈ P with r ⇓ O. Using the definition of ⊆O, we also
get ∨h r ⊆O p′ for any r ∈ P . Consider the case of p′ ⇓ O, thus there is
p′′ ∈ P ⊆ WNFh−1 and p′′ ⊆O p′ as well as p′′ ⇓ O holds. Similarly, if p′ ⇓/ O,
any element p′′ ∈ P ⊆ WNFh−1 has p′′ ⇓/ O and p′′ ⊆O p′.

It remains to show that this fragment can be effectively guessed. This is
stated by the lemma below. The normalization process tells us that for k =
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|N |.|WNFh−1|, where |WNFh−1| ≤ exph(|O|), we get p(k) ≡ p. Here, p(i) is p
with non-terminals replaced by the i’th iteration towards a fixed point as dis-
cussed in Appendix O.1, the syntax is borrowed from Appendix E.2. Initializing
i = k in the lemma below yields the desired (h − 2) − EXPSPACE decidability
result. To achieve this complexity, the algorithm avoids maintaining a call stack.

Lemma 33. Let p be a weak linear term with urgency h, let t ∈ WNFh−1 and
let i ∈ N. If p does not contain non-terminals, t ⊆O nfO(p) can be checked in
space

(|p|2.(|E |.|N |.exph−2(O(|SNFO
0 |)))

2
)
2

.

If conversely, p contains non-terminals, t ⊆O p(i) can be checked in space

(O(log(i)) + max{|E |2, |p|2}.(|E |.|N |.exph−2(O(|SNFO
0 |)))

2
)
2

.

Proof. We only handle the case where h is even, the case with an odd h is dual.
Our algorithm is a non-deterministic space bounded algorithm. We show that
the check is possible in non-deterministic |p|2.Norm2

O space if p does not contain
non-terminals, and non-deterministic O(log(i))+max{|p|2, |E |2}.Norm2

O space if
p contains non-terminals, where NormO = |E |.|N |.exph−2(O(|O|)). These com-
plexities can be translated into deterministic space by Savitch’s Theorem [54].

This yields the deterministic complexities (|p|2.Norm2
O)

2
without non-terminals

and (O(log(i)) + max{|p|2, |E |2}.Norm2
O)

2
with non-terminals.

We proceed by an outer induction on i ∈ N and an inner structural induction
on p. The base case is p ∈ Σ ∪ {err, skip} or p ∈ N . The check t ⊆O nfO(p′) for
p′ ∈ Σ ∪ {err, skip} can be done in NormO time, and thus in the same amount of
space, by employing the usual normalization procedure followed by evaluating
the relation. This also covers the case p ∈ N as A(0) = err for all A ∈ N . The
inductive case for the inner induction is very similar between the outer base case
i = 0 and the outer inductive case moving from i − 1 to i, so we do not handle
it separately.

We continue with the outer inductive case. For the base case of the in-
ner induction, where i ∈ N, we have p ∈ N or p ∈ Σ ∪ {err, skip}. The
case p ∈ Σ ∪ {err, skip} is handled exactly as in the case we initially han-

dled. Let p = A ∈ N . Then, p(i) = E(A)
(i−1)

. Because (N, E) is a linear
grammar, E(A) is a linear term. We call the induction hypothesis to examine

t ⊆O nfO(E(A)
(i−1)

) and returns its result. This is possible in non-deterministic
O(log(i − 1)) + max{|E(A)|2, |E |2}.Norm2

O space by the induction hypothesis.
Note that we do not need to compute beyond calling the induction hypothesis,
so we do not need additional space for it (i.e. we are a tail recursion).

For the inner inductive case, let p be a weak linear term. If we have inurg(p) <
h, all non-terminals that appear in p must also have internal urgency of at most
h−1. These non-terminals can only refer to non-terminals of internal urgency at
most h−1. Then we can apply the normalization procedure, limited only to these
non-terminals, to construct p′ = nfO(p(i)). This takes O(log(i))+|p|.NormO time,



56 Eren Keskin, Roland Meyer, and Sören van der Wall

i.e. the same amount of space. The former term stems from the counter used to
stop at the i-th LFP iteration, and the latter term stems from the normalization.

Now let p = q ∨h r . We have nfO(p(i)) = nfO(q(i)) ∨h nfO(r (i)). Even if p
does not contain non-terminals, we still handle p(i) instead of the equal term
p to unify our notation. We write q′ = nfO(q(i)), r ′ = nfO(r (i)), and also let
q′ = h

∨
Q and r ′ = h

∨
R, where Q, R ⊆ WNFh−1. We stress that the algorithm

will not explicitly construct these terms. We have

nfO(p(i)) = ( h
∨

Q) ∨h ( h
∨

R) =O
h
∨

(Q ∪ R).

The final equality =O, i.e. (⊆O ∩ ⊇O), follows from the definition of ⊆O, which
ignores bracketing among choices. By the definition of ⊆O, we observe that
t ⊆O p(i) holds if and only if there is a s ∈ Q or s ∈ R with t ⊆O s. The
conditions s ∈ Q and s ∈ R are respectively equivalent to s ⊆O q and s ⊆O r .
This means that a s ∈ {q, r} exists with t ⊆O s if and only if t ⊆O p(i) holds.
To verify the existence of such terms, algorithm first guesses a term s ∈ {q, r}.
Then, it removes the rest of the term from the memory and checks t ⊆O s(i).
This can be done in non-deterministic O(log(i)) + max{|q|2, |r |2, |E |2}.Norm2

O

space by the induction hypothesis. This yields the desired complexity. If p does
not contain non-terminals, we have s(i) = s for all s ∈ {q, r} and the check is
possible in max{|q|2, |r |2}.Norm2

O space.
For the remaining inductive case, we have p = q.r . We similarly write q′ =

nfO(q(i)) = h
∨

Q and r ′ = nfO(q(i)) = h
∨

R with Q, R ⊆ WNFh−1. We get

nfO(p(i)) = nfconcO(( h
∨

Q).( h
∨

R)) = h
∨

{nfO(q′′.r ′′) | q′′ ∈ Q, r ′′ ∈ R}.

Note that this distribution is only possible because all terms q′′ ∈ Q and r ′′ ∈ R
have urgency h−1. Same as before, we observe t ⊆O nfO(p) if and only if there are
q′′, r ′′ ∈ WNFh−1 with t ⊆O nfO(q′′.r ′′), q′′ ⊆O nfO(q(i)), and r ′′ ⊆O nfO(r (i)).
If no such q′′ and r ′′ can be found, this implies that t ⊆O p(i) does not hold.

Assume p contains no non-terminals. Then q(i) = q and r (i) = r . The al-
gorithm proceeds as follows. It first guesses q′′, r ′′ ∈ WNFh and verifies t ⊆O

nf(q′′.r ′′) by the usual normalization procedure, which takes at most (|q′′| +
|r ′′|).NormO ≤ Norm2

O space. If this fails, the algorithm returns false. Then it
removes all information except q′′, q, r ′′, and r . The space required for this
bounded from above by 4.|p|.NormO. It proceeds by checking q′′ ⊆O nfO(q) and
r ′′ ⊆O nfO(r), which is possible in max{|q|2, |r |2}.Norm2

O by the induction hy-
pothesis. In total, the algorithm requires 4.|p|.NormO + max{|q|2, |r |2}.Norm2

O

non-deterministic space. We have

4.|p|.NormO + max{|q|2, |r |2}.Norm2
O = 4.|p|.NormO + 3. max{|q|2, |r |2}.Norm2

O

≤ (4.|p| + 3.(|p| − 1)
2
).Norm2

O

= (4.|p| + 3.|p|2 − 6.|p| + 3).Norm2
O

= (3.|p|2 − 2.|p| + 3).Norm2
O

≤ 3(|p|2).Norm2
O
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Now conversely assume that p contains non-terminals. Because p is linear,
one of q or r does not contain non-terminals. W.l.o.g. let q be this term. The
algorithm first guesses q′′, r ′′ ∈ WNFh−1 and verifies t ⊆O nfO(q′′.r ′′) using
the usual normalization process in Norm2

O space. If this fails, the algorithm re-
turns false. Similarly to the case without non-terminals, it then removes all
information except q′′, q, r ′′, and r . Following this, it verifies q′′ ⊆O q. As
before, if the check fails, it returns false. The term q does not contain non-
terminals, so the check takes an additional space of only |q|2.Norm2

O by the
induction hypothesis. The same calculation as in the no non-terminal case yields
an upper bound |p|2.Norm2

O on total memory used to complete this step. Upon
completing the step, the algorithm erases q′′ and q from memory. Then it
checks r ′′ ⊆O r and returns the result of the check. This check is possible in
O(log(i)) + max{|r |2, |E |2}.Norm2

O non-deterministic space by the induction hy-
pothesis. Note that the algorithm does not store any additional information
besides the information required to perform this check. This yields the desired
space complexity.

By slightly modifying the approach in Lemma 15, we can also get a com-
plexity bound wrt. to |O|. Instead of letting Eve resolve the transitions in the
DFA for |O|, we let Adam resolve them. We abuse the notation and refer to this
translation with the symbol tr(.) for the rest of this section.

tr(a) =
1

∧
{(p, q) | δ(p, a) = q} tr(err) = err

tr( u
Ì

P ) = u
Ì

{tr(p) | p ∈ P } tr(skip) = skip

tr(p.q) = tr(p).tr(q) tr(A) = A ,

The translation for the non-terminals also remains the same Etr(A) = tr(E(A)).
The transitions of the translated objective tr(O) remain the same, however it
accepts ⊥ as well as the original final states. This is because the task of choosing
the correct transition is now assigned to Adam, and a failure leads to an Eve
win. The translation only introduces ∧1 at the lowest urgency level and does
not modify the urgencies. Thus, a weak linear term p and a weak linear gram-
mar (N, E), the translated tr(p) and (N, tr(E)) both remain weak linear. The
Lemma Lemma 15 holds for this type of translation as well.

Lemma 34. p ⇓ O if and only if tr(p) ⇓ tr(O).

Proof Sketch. Letting Adam simulate the translations of the automaton does not
change the winner. Determinicity still only allows for one choice of transition per
tr(a) that does not lead to his loss. The proof follows the same steps as those of
Lemma Lemma 15.

The complexity wrt. |O| follows.

Lemma 35. Let (N, E) be a weak linear grammar with maximal urgency h, p
a weak linear term, and O ⊆ Σ∗ a regular objective. Then p ⇓ O can be decided

in (max{|E |, |p|}.|E |.|N |.exph−2(O(|O|2)))
4

space.
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P Lower Bound

We prove the lower bound given in Theorem 4 with a reduction from context-
bounded multi-pushdown games, a concurrent programming model the complex-
ity of which is well-understood [25,26]. The proof of the lower bound given in
Theorem 3 can be found in Appendix J.

P.1 Multi-Pushdown Games

We introduce multi-pushdown games trimmed to our needs. A b-context-bounded
2-stack pushdown game (b-2PDG) is a tuple (Q , E , p0, F , Γ, δ) consisting of a
finite set of states Q , a set of states E ⊆ Q owned by Eve, an initial state p0, a set
of goal states F ⊆ Q , a stack alphabet Γ , and a set of transitions δ ⊆ Q ×Op×Q .
Transitions are annotated by a stack operation from Op = Γ ×Γ ≤2 ∪{nx}. With
(a, w), we pop a from and push w to the active stack. With nx, we change the
active stack, called a context switch. We assume there is a bottom of stack
symbol $ ∈ Γ that is never removed.

The semantics of a b-2PDG is a game arena (CF , →, own) with a reachability
objective CFF for Eve. The positions are configuration from CF = Q × [0, b] ×
Γ ∗ × Γ ∗. A configuration (p, k, s1, s0) stores the current state p, the number
of context switches k that have occurred so far, and the contents of the two
stacks. Stack s0 is active after an even number of context switches, stack s1

is active when k is odd. The owner and moves are defined as expected, there
are no context switches beyond b, and we assume there are no deadlocks. The
objective is CFF = F × {b} × Γ ∗ × Γ ∗, meaning we reach a goal state and have
exhausted the context switches. Plays, strategies, and winning are defined like
for urgency programs. The task is to decide whether Eve has a strategy to win
from (p0, 0, $, $).

Theorem 12. [26] b-2PDG are (b − 2) − EXPTIME-complete.

P.2 Reduction

The reduction is in two steps, we first reduce 2PDG to the problem of making
an observation:

Proposition 9. Repetition of Proposition 6 Given a (2h+1)-2PDG PD, we can
compute in poly time p over Σ and (N, E) of maximal urgency h and an objective
DFA O so that Eve wins PD if and only if p ⇓ O.

We now reduce the problem of making an observation to the specialized
contextual equivalence. Indeed, p ⇓ O is the same as to check χO(•) �O p,
where χO(•) is the characteristic term of the empty context formed for objective
O. The problems is that the characteristic term may be exponential. We utilize
the trick from Appendix K.1.

Lemma 36. Given p over Σ and (N, E), and objective O, we can compute in
poly time χtr(O)(•), tr(p), and tr(O) so that p ⇓ O if and only if χ(•) �tr(O) tr(p).
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We sketch the proof of Proposition 6. We encode positions (p, k, x . . . $, y . . . $)
of the 2PDG as urgency terms

Hw. g.xu . . . $u.@
︸ ︷︷ ︸

s1

. h.yv . . . $v.@
︸ ︷︷ ︸

s0

.

Stack symbols x ∈ Γ are represented by terms xu of urgency u. Terminal @
marks the end of a stack content encoding. The terms g and h represent the
history of the play. Finally, Hw implements context switches. The construction
controls w, u, and v so that the top of the active stack is leading.

The top of the active stack allows the game to proceed as

. . . g. (
∨

p∈Q

ì

t∈δp,x

〈t〉u)

︸ ︷︷ ︸

Rewritten from xu

. . . $u.@ . . . → . . . g.〈t〉u
x . . . $u.@ . . .

Eve selects the current state p ∈ Q . Then the player owning this state selects
the next transition. We use δp,x ⊆ δ to denote the set of transitions from state
p with top of stack symbol x. The set is non-empty because the 2PDG does not
deadlock. The term 〈t〉u of the chosen transition contains terminals which join
history g to record the state change and the urgency u. The objective O is a
product DFA that reads the terminals for each urgency separately and enforces
consistency with the 2PDA transitions.

Push/pop operations modify the active stack encoding in the expected way.
For context switches, the leading term must swap the stack. To implement
this, we use a decrement process on the now no longer active stack. We de-
fine stack symbols xu as 〈→ st〉u.r ∨u 〈→ nx〉u.xu−1, where r is the choice of the
next transition explained above. The decrement process relies on the alternative
〈→ nx〉u.xu−1, which replaces xu by xu−1. A snapshot of the decrement process
is

Progression of the leading term

. . . g′.〈nx〉 . . . 〈→ nx〉.xu−1
i−1

︸ ︷︷ ︸

Urgency u−1

.xu
i . . . $u@ . . .

The terminals 〈→ st〉, 〈→ nx〉, 〈nx〉, and @ allow the objective to check the
decrement process for correctness.

Each urgency simulates two contexts. Since we do not need to access the odd
stack before the first context switch, we only generate this stack when it is first
accessed. This allows us to simulate three contexts with the maximal urgency.
In total, the construction simulates 2h + 1 contexts with urgency h.

Q Lower Bound Details

Construction, Objective: The set of terminal symbols Σ consists of assign-
ments x := val and assertions x =! val of the variables fu ∈ Q ∪{−}, su ∈ Q ∪{−},
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and cu ∈ {nxt, sty} for each 0 < u ≤ h, along with a variable gn ∈ {+, −}. In
the parts of the play, where the urgency of the term is 0 < u ≤ h, variable fu

will keep track of the first MPDG state, the variable su will keep track of the
latest MPDG state, and cu ∈ {nxt, sty} will be used to enforce the correctness
of context switches. The variable gn ∈ {+, −} keeps track of whether the game
has generated the second stack by making the first context switch. The objective
DFA A processes the updates and assertions on the values of these variables.
For each 0 < u ≤ h, the DFA also keeps an assertion failure flag erru ∈ {⊥, ⊤},
that records whether there has been assertion failure for fu, su, cu, and gn. If an
assertion failure happens for one of these variables, then erru is irrevocably set
to ⊥. In the initial state i , we have gn = fu = su = −, cu = st, and erru = ⊤ for
all 0 < u ≤ h. The DFA A accepts if and only if s1 ∈ F , there are no assertion
errors (erru = ⊤ for all 0 < u ≤ h), and the latest states are consistent with the
first states (su+1 = fu for all 0 < u < h).

Construction, Assignments: We now move on to the construction of the
defining assignments. Each stack symbol is represented by a different term for
each urgency. The set of non-terminals is N = {xu

NT | x ∈ Γ, 0 < u ≤ h}. The
representation of an individual stack symbol for urgency u, wraps the correspond-
ing non-terminal in a unary choice with urgency u. Formally the representing
term is the singleton choice xu = u

∨
xu

NT for all 0 < u ≤ h. This ensures that the
u-representation of a stack symbol has urgency u (remember that non-terminals
have highest urgency). Furthermore, the term that represent the stack symbol
must be the leftmost action. This allows a concatenation of terms that repre-
sent stack symbols to act like one stack in the MPDG. The defining assignments
E : N → T are laid out below for all xu

NT ∈ N . We use helper terms to simplify
the representation. For all u ≤ h, v < h, p, q ∈ Q , x ∈ Γ , and w ∈ x≤2 we have:

E(xu
NT ) = (cu =! nx.xu−1) ∨u (cu =! st.P opu

x)

P opu
x = u

∨

p∈Q

su =! p.〈δp,x〉u 〈δp,x〉u = u
Ì

t∈δp,x

〈t〉u
x

〈(p, x, w, q)〉u
x = su := q.wu

0 . . . wu
n

〈(p, nx, q)〉h
x = (gn =! −.gn := +.$h.@.xh) ∨h

(gn =! +.sh := q.ch := nx.xh)

〈(p, nx, q)〉v
x = sv := q.cv := nx.xv

@ = c1 := st . . . ch := st

Hu = Hu−1. u
∨

p∈Q

fu := p.su := p

The initial term for the game is simply Hh−1.$h.@. The terminals 〈→ st〉u

and 〈→ nx〉u used in the main paper refer to the assertions cu =! st and cu =! nx.
At context switches in urgency h, Eve also needs to “guess” whether the second
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stack has been generated. In the case where it has not yet been generated, the
correct choice generates it. In the case where it has already been generated, the
correct choice triggers a context switch in the usual way.

Q.1 Denotational Semantics

We show how to define a denotational semantics based on our axiomatization.
What we find interesting is that, with the axiomatization at hand, the denota-
tional semantics is a derived construct: the semantic domain and the interpreta-
tion of function symbols are induced by the axiomatization, yet the semantics is
guaranteed to be fully abstract wrt. contextual equivalence resp. its specialized
variant. The creativity that is saved in the definition of the semantics of course
had to be invested up front when coming up with the axiomatization. We found
it easier to study an axiomatization than a denotational semantics, because the
problem is narrowed down to understanding the interplay between operators as
opposed to coming up with a freely chosen semantic domain. We recall the basics
of denotational semantics before turning to the details.

A denotational semantics for our programming language is a pair ((D, ⊆
), I) consisting of a complete partial order (D, ⊆) of semantic elements and an
interpretation I : F → Dω → D that assigns to each function symbol f ∈ F
in our language a monotonic function fI : Dar(f ) → D of the expected arity.
The function symbols F are Σ, {skip, err, .}, and choices of arbitrary arity with
urgency 1 to h. We lift the interpretation to all terms p and assign them an
element D(p) ∈ D, called the denotational semantics of the term. For recursion-
free terms, the lifting is purely compositional:

D(a) = aI D(p.q) = D(p).ID(q),

and similar for the other function symbols. For the non-terminals (N, E), this
allows us to understand the defining equations as a monotonic function

EI : (N → D) → N → D.

The least solution of this function is the denotational semantics of the non-
terminals: D(A) = [lfp.EI ](A) for every A ∈ N . This is the missing case to
define the semantics of arbitrary program terms again in a compositional way.

We focus on the denotational semantics induced by the axiomatic congru-
ence. The development for the O-specialized axiomatic congruence with O right-
separating is the same. If O is not right-separating, we cannot give a guarantee
that the resulting semantics will be fully abstract. The denotational semantics
induced by ≡ is ((D≡, ⊑), I≡). The set of semantic elements is D≡ = T/≡, we
factorize the set of terms along the axiomatic congruence. The complete partial
order on these congruence classes is the one given by the axiomatic precongru-
ence. It is guaranteed to be well-defined due to the precongruence. It is guaran-
teed to stabilize in an ordinal by the fact that chains are well-ordered sets. The
interpretation of the function symbols is as expected:

aI≡ = [a]≡ [p]≡ .I≡ [q]≡ = [p.q]≡.
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Well-definedness holds because ≡ is a congruence, monotonicity holds because ⊑
is a precongruence. The semantics is fully abstract wrt. contextual equivalence,
D(p) = D(q) iff p � q, which is merely a reformulation of Theorem 1. We can
define other fully abstract semantics by introducing representative systems on
the congruence classes, for example based on normal forms.
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