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We address the problem of preserving non-interference across compiler transformations under speculative
semantics. We develop a proof method that ensures the preservation uniformly across all source programs.

The basis of our proof method is a new form of simulation relation. It operates over directives that model the

attacker’s control over the micro-architectural state, and it accounts for the fact that the compiler transforma-

tion may change the influence of the micro-architectural state on the execution (and hence the directives).

Using our proof method, we show the correctness of dead code elimination. When we tried to prove register

allocation correct, we identified a previously unknown weakness that introduces violations to non-interference.

We have confirmed the weakness for a mainstream compiler on code from the libsodium cryptographic

library. To reclaim security once more, we develop a novel static analysis that operates on a product of source

program and register-allocated program. Using the analysis, we present an automated fix to existing register

allocation implementations. We prove the correctness of the fixed register allocations with our proof method.
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1 Introduction
Cryptographic implementations must satisfy two conflicting requirements: They must compute

highly performant to be of practical use and be absolutely secure for use in critical systems.

Implementations optimize performance with knowledge about underlying micro-architectural

hardware features such as memory access patterns that improve cache usage. Security, however, is

threatened by side-channel attacks that exploit precisely these hardware features to leak sensitive

information [Brumley and Boneh 2005]. To mitigate side-channel attacks, leakage of sensitive data

needs to be eliminated. This confronts the programmer with two challenges: First, semantics of

source-level languages do not model leaks produced by side-channels [Vu et al. 2021]. And second,

even if the source-level code is secure, incautious implementation of compiler optimizations can

insert new leakage, rendering efforts to secure the source program useless [Simon et al. 2018; Barthe,

Blazy, Grégoire, et al. 2019]. Developers address these problems with coding guidelines such as

constant time programming and disabling compiler optimizations. But following the guidelines is

non-trivial and overlooked mistakes corrupt the guarantee for security [Al Fardan and Paterson
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Code1 chacha20(..., uint8* sec, uint8 bytes) {

2 uint8 buf[8];

3 stk[0] = bytes;

4 for (i = 0; i < 8; i++)

5 { buf[i] = sec[i]; }

6 ...

7 bytes = stk[0];

8 if (bytes < 64) {...} ... }

Stack (-SP)
0x48 stk
0x40 buf
Heap
0xE0
....
0xC8 sec
0xC0

sensitive
data

Code 1. Spectre-PHT. Registers are orange and memory variables teal. The stack contents are shifted by the
stack pointer to appear constant. Framed instructions were inserted by register allocation.

2013]. At the same time, disabling compiler optimizations is dissatisfactory. Formal methods have

shown to help with the challenges: The first challenge is overcome with novel leakage semantics

that model side-channel leakage within the programming language’s semantics [Molnar et al. 2006;

Barthe, Betarte, et al. 2014]. For the second, novel proof methods for compilers under leakage

semantics provide a guarantee that side-channel security of the source program carries over to

the executable [Barthe, Grégoire, and Laporte 2018; Barthe, Blazy, Grégoire, et al. 2019; Barthe,

Blazy, Hutin, et al. 2021; Barthe, Grégoire, Laporte, and Priya 2021]. Sadly, the recent discovery

of Spectre attacks [Canella et al. 2019; Kocher et al. 2019] again presents a hardware feature that

leakage semantics fall short of: Speculative execution produces side-channel leakages not captured

by leakage semantics. This means both challenges were open again, and the verification community

was quick to address the first: The development of speculative execution semantics has already

taken place [Cauligi, Disselkoen, Gleissenthall, et al. 2020; Guarnieri, Köpf, Reineke, et al. 2021],

and formal tools find speculative side-channel leakages or even prove their absence (cf. Section 7).

Provably correct compilation under speculative execution semantics, however, remains an unsolved

challenge that we address in this paper. It is the challenge that we address in this paper.

1.1 Background
Before we detail our contributions, we position our paper in the field of formally verified cryptogra-
phy and provide background on Spectre attacks and mitigations. We outline speculative execution
semantics, non-interference as the property that guarantees a program’s side-channel security even

under speculation, and provably correct compilation for leakage semantics without speculation.

Formally verified cryptography. The field of formally verified cryptography aims to provide cryp-

tographic implementations that are secured not only by trust in the developer but in a machine-

checkable proof of correctness and security. In order to achieve this goal, implementations are

carefully crafted and three main areas of research pursue different subgoals [Barbosa et al. 2021]:

(i) Cryptographic protocol design aims to provide proofs that the cryptographic protocol in itself

does not reveal secrets to adversarial protocol participants, among other properties. (ii) Correct and
performant implementation of the protocol aims to prove the implementation functionally correct.

(iii) Implementation security investigates the compilation of implementations and the execution of

binaries on real hardware in order to prove the absence of attacks that stem from the discrepancy

between idealized program semantics and actual hardware semantics. This paper belongs to (iii):
We assume that source programs correctly implement formally verified protocols, i.e. steps (i)
and (ii) are completed. We investigate whether compiler transformations preserve side-channel

security. To that end, our formal semantics models side-channel leakages and speculative execution,

the micro-architectural hardware components that enable the recently discovered Spectre attacks.
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Spectre attacks and mitigations. Spectre attacks observe side-channel leakages that are produced
during speculative execution. Speculative execution allows the processor to speculatively execute

instructions from the pipeline even though they still have unevaluated instruction parameters.

When the processor detects a misspeculation, i.e. it assumed incorrect values for the unevaluated

parameters, it rolls back execution to erase its effect. Rollbacks are invisible to typical source-level

semantics, but parts of the micro-architecture such as the cache-state are not reverted. This creates

side-channel leakage observable to an attacker during the speculative execution of instructions.

Spectre attacks target this in the following way: (i) Train some micro-architectural component to

speculatively execute a code fragment that (ii) under misspeculation brings sensitive data into

a processor’s register, which (iii) is leaked through side-channels. The prominent example is

Spectre-PHT [Kocher et al. 2019], whose source of speculation is the processor’s branch prediction
unit (Prediction History Table), and the side-channel leakage happens via the cache [Yarom and

Falkner 2014; Liu et al. 2015] or the program counter [Molnar et al. 2006]. Code 1 demonstrates

the attack:
1
The code is intended to load an 8-byte chunk from sec, which points into a stream of

sensitive data, and to store it into a stack-local buffer buf in order to later perform computation on

it. (i) The attacker might train the branch predictor in a way that it speculates the for-conditional
in Line 4 and executes Line 5 an additional time even though i = 8. Line 5 then stores sensitive

data from &sec + 8, say v, to &buf + 8 which aliases with &buf + 8 = &stk. The speculative
execution might continue with Line 7, where (ii) v is loaded into bytes. (iii) The register is then
used in Line 8, where the branching condition is leaked, disclosing to the attacker whether v < 64.

The de facto approach to avoid Spectre attacks are hardware and software mitigations. In hard-

ware, a simple mitigation is to disable specific speculation sources using control registers. This

penalizes performance as it disables the optimization for the whole program, even when other

parts of the program do not operate on sensitive data. Software mitigations have received more

attention, especially for branch prediction (Spectre-PHT, cf. Section 7, Tools), because disabling
branch prediction has severe impact on performance [Vassena et al. 2021, Evaluation]. Spectre-PHT

has two known software mitigations: Speculation fence insertion and speculative load hardening

[Zhang et al. 2023; Carruth 2024]. Speculation fences sfence instruct the processor to stop specu-

lation and wait until all instruction’s unevaluated parameters are resolved before either continuing

computation in case of a correct prediction or rolling back in case of a misprediction. This prevents

instructions following sfence to be executed speculatively altogether.2 The mitigation is applicable

to all known kinds of speculation sources. Speculative load hardening slh𝑎 is a mitigation unique

to branch prediction. Executing slh𝑎 wipes the contents of register 𝑎 in case of a branch mispre-

diction, but does not stop speculative execution. In case of correct prediction or non-speculative

execution, it leaves the register contents unchanged. In the binary, this semantics is achieved by

tying the contents of 𝑎 to a previous branching condition cond via a data dependency (in the

sense of 𝑎 ≔ cond ? 𝑎 : 0).
3
This forces the processor to evaluate cond before assigning a value

to 𝑎. The processor is not guaranteed to stop speculation immediately upon learning the correct

value for cond, but the value in 𝑎 is now safe to be leaked. For other speculation sources (Section 7,

Speculation Sources), speculative load hardening does not work because no similar data dependency

is known. The Spectre attack from Code 1 is mitigated by inserting either sfence or slh bytes
between Line 7 and 8.

1
The attack on this code is unlikely to execute on actual hardware because the specific speculation patterns would be hard

to train. We chose it because it also demonstrates a new vulnerability in register allocation that we present in this paper.

2
This is idealized: In x86, for example, the instruction is realized with a memory fence LFENCE, which only executes after all

loaded parameters to instructions are resolved - stopping the so far known speculation sources.

3
In x86, a cmov instruction is used which does not introduce control-flow branching, so branch prediction will not speculate.
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Speculative execution semantics and Non-interference. Speculative execution semantics extend leak-

age semantics by speculation. The achievement of leakage semantics is to incorporate a model

leakage observable to the attacker in the semantics. The observable side-channel leakage depends

on the leakage model. Common is the constant-time model which exposes the addresses of memory

accesses and the program counter as leakage to the attacker [Barthe, Betarte, et al. 2014; Guarnieri,

Köpf, Reineke, et al. 2021]. Transitions in leakage semantics (without speculation) are of the form

𝑠 𝜆 𝑡 . They prompt a transition from 𝑠 to 𝑡 while capturing attacker-visible effects on the micro-

architectural state in the leakage observation 𝜆. Side-channel security can now be formulated as a

property on the program’s leakage semantics. For that, a relation declares initial states as indis-

tinguishable to the attacker when they differ only w.r.t. sensitive data unknown to the attacker.

The property is non-interference, which requires that the executions from indistinguishable initial

states produce equal leakages. Non-interference guarantees side-channel security: leakages cannot

depend on sensitive data in any way. Without speculation, the running example Code 1 satisfies

non-interference under the constant-time leakage model: The control flow is not dependent on the

secret sec and the addresses of memory accesses (Lines 3, 5, and 7) are independent as well.

The extension to speculative execution semantics came with a new challenge: Non-determinism.

Whether the processor mispredicts and when it detects misprediction is highly hardware dependent

and potentially even under the attacker’s influence. As a result, there is not a single execution

but instead a set of possible executions, each with a different sequence of leakages. A transition

in speculative execution semantics is of the form 𝑠 𝛿 :𝜆 𝑡 . Again, 𝜆 is the attacker-observable

leakage. What is new is the directive 𝛿 that models the attacker’s control over speculation [Cauligi,

Disselkoen, Gleissenthall, et al. 2020; Barthe, Cauligi, et al. 2021]. The directives determine the

program’s speculation behavior. They provide an abstraction of the micro-architecture that the

attacker can use to steer the execution whenever it depends on the micro-architectural state. In our

example, the attacker steers speculation with the following sequence of directives in order to lead

execution to the leakage of sensitive data:

•
Line 3

. (br . •)8
Lines 4 and 5

. sp

Line 4

. su stk 0
Line 5

. br . • . •
Lines 4, 7, and 8

.

The intuition is the following. The first instruction is a memory access which cannot be influenced

by the attacker, denoted by the directive •. Then, the attacker steers execution so that the correct

branch is taken 8 times: Directive br executes the correct branch and • executes the memory

assignment inside the loop. The attacker then chooses to begin a misspeculation with directive sp

which enters the loop once more. This leads to an unsafe memory access during the additional loop

iteration, where we let the attacker choose actual memory location with su stk 0. The remaining

sequence leads the execution to the leaking instruction.

In order to phrase non-interference on speculative execution semantics, the idea is to compare

executions where the sequence of directives along the executions are equal. Then, the attacker

trained the hardware in the same way and can be sure that observed differences in leakage are due

to sensitive data. We define our speculative execution semantics (Section 2) and non-interference

property (Section 3) in this spirit.

Secure compilation. The goal of secure compilation is to prove that a compiler pass preserves non-

interference from source to target program. The current methods for leakage semantics without

speculation draw from classical methods for compiler correctness which utilize simulation in order

to argue that the target program’s executions can be found in the source program’s semantics

[McCarthy and Painter 1967; Leroy 2009]. A traditional simulation is a relation ≺ between the

target program’s states and the source program’s states. Whenever a target state 𝑡 is simulated

by a source state 𝑠 , 𝑡 ≺ 𝑠 , and has a transition 𝑡 𝑜 𝑣 , where 𝑜 is an observable environment
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𝑡1
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Fig. 1. Constant-time cubes. Left: leakage transforming; Right: directive transforming (⊳).

interaction, then 𝑠 has to have a next transition 𝑠 𝑜 𝑢 so that 𝑣 ≺ 𝑢. Simulation ensures that

the target program’s execution produces the same observable environment interactions as the

source program. For leakage semantics, a notion of simulation needs more: Compilers aim to

preserve observable environment interactions such as system-calls, but they regularly modify

side-channel leakage which creates a difference in leakage between source and target program.

Leakage transformation [Costanzo et al. 2016; Barthe, Grégoire, and Laporte 2018; Barthe, Grégoire,

Laporte, and Priya 2021] solves this issue: Given the leakages along a source program’s execution,

the simulation also provides a way to transform the observable leakage into the observable leakage

of the corresponding target program’s execution. In order to preserve non-interference, a simulation

with leakage transformation needs to satisfy the constant-time cube diagram. The cube diagram can

be seen in Figure 1 on the left. It looks at two pairs of states related by simulation 𝑡1 ≺ 𝑠1 and 𝑡2 ≺ 𝑠2.

Then, if 𝑠1’s next transitions leak a sequence 𝑘 and so do 𝑠2’s next transitions (black) then the next

transitions’ leakage from 𝑡1 and 𝑡2 must coincide as well (purple). The target leakage 𝑙 does not
need to be equal to the source leakage 𝑘 . Table 1 (left) lists compilers employing simulations with

leakage transformation (no speculative semantics) that satisfy the constant-time cube diagram.

In the speculative execution setting, compilers so far try to avoid Spectre attacks by running

compiler passes that insert the mitigations discussed above. These passes are among the last passes

in the compiler chain in order to avoid the removal of mitigations by other passes. They aim to

eliminate speculative leakage by inserting mitigations conservatively, which entails significant

performance overhead. Even worse: Efforts to improve performance were flawed, again leading to

insecure executables [Patrignani and Guarnieri 2021]. Passes that insert mitigations are desirable

because they free the developer from having to think about speculation: Before the compiler runs

the mitigation pass, the semantics can be considered speculation-free. However, recent research

suggests that in order to obtain minimal performance overhead, the developer needs an interface

to control inserted mitigations [Shivakumar et al. 2023]. This means a new proof method for

compilation is needed that works when both source and target program operate under speculative

execution semantics.

To the best of our knowledge, Patrignani and Guarnieri [2021] is the only work so far to (dis-)prove
compiler correctness under speculative execution semantics. The authors target specifically compiler

passes that insert mitigations and discovered the aforementioned flaws in fence insertion and

speculative load hardening. Being tailored towards mitigations, they employ assumptions on the

setting that do not hold in general and that we overcome in our development. We detail the

differences to our work in Table 1 (right): Property: The first difference lies in the property

ensuring side-channel security. While speculative non-interference preservation (SNiP) is the goal,
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Table 1. Left: Compilers that preserve side-channel security under leakage semantics; Compcert [Leroy 2009],
Jasmin [Barthe, Grégoire, Laporte, and Priya 2021]. Right: Proof methods for compilers with speculative
execution semantics; Ex. Spectres [Patrignani and Guarnieri 2021]. Green parameters are more expressive.

Compcert Jasmin Ex. Spectres This Paper
Property NiP NiP STsP SNiP
Simulation LT-Sim LT-Sim LO-Sim DT-Sim
Speculation — — SW, M, TO US, ST
Non-Det No No No Yes
Spec Source — — PHT PHT
Memory Safety S S U S
Passes Full Full SLH & Fence Ins DC & RA

their proof method preserves speculative taint safety (STsP). Taint safety is a safety property that

soundly approximates non-interference. While STsP is not an approximation of SNiP, the method

is appropriate for analyzing mitigation passes. Our method is designed to prove SNiP, instead.
Speculation and Non-Det: A bigger difference is the speculative execution semantics: They

assume a speculation window (SW) that limits the number of steps speculatively executed after a

misprediction before a rollback occurs. Speculation windows are a restriction of the speculative

execution semantics. While the restriction is reasonably chosen with respect to current hardware,

it presents an under-approximation of the speculative execution semantics. They further assume

that the semantics always mispredicts branches (M) to maximize speculative execution. Mispredict

semantics are no further restriction of the semantics, as maximizing speculative execution also

maximizes the side-channel leakages produced. Together, these assumptions form a deterministic
restriction of the full speculative execution semantics. The focus on compiler mitigations also

led them to the assumption that the source language is speculation-free, meaning the speculative

semantics are target program only (TO). In this paper, we deal with full, unbounded speculative

execution semantics (US) and the induced non-determinism in both source and target semantics (ST).
Memory: Our work is presented for structured memory (S) and the assumption that source

programs are memory safe when executed under speculation-free semantics. Memory safety is a

common assumption for compilers, as unsafe memory accesses are usually considered undefined

behavior in source semantics. Our proof method also works with unstructured memory (U), but
we also present a static analysis whose presentation immensely benefits from structured memory.

This led us to present all of our work with structured memory as the concepts behind the proof

method stay the same. Simulation: Mitigations insert speculation barriers and do not change the

code otherwise. As the source program in Patrignani and Guarnieri [2021] does not speculate, the

leakages of the source program will still be fully present and unchanged in the target program.

Because the target program is executed with speculative execution semantics, there can, however,

be additional leakages present in the target program. This leads their work to consider leave-out

simulations (LO-Sim), where source leakages are equal to target leakages with additional speculative

leakages. For general compiler transformations and unbounded speculation, we introduce the more

general directive transforming simulations (DT-Sim). Passes: Their work targets the compiler

passes that insert the software mitigations against spectre from above: Speculative load hardening

and fence insertion. Our work targets two general-purpose compiler transformations: Dead code

elimination (DC) and transformations from the register allocation phase (RA).
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1.2 Contributions
In this paper, we present snippy simulations, a novel proof method for preservation of non-

interference under speculative execution semantics. The main challenge to overcome with specula-

tion is the non-determinism in directive semantics. First, the definition of simulations becomes more

involved: Deterministic semantics have the advantage that simulations are always bi-simulations

[Milner 1971]. A simulation for deterministic semantics synchronizes the (singular) execution of the

source program and the execution of the target program. For non-deterministic semantics such as

speculative execution semantics, each of the target program’s executions must be synchronized with

a source program’s execution. Second, similar to how compilers do not preserve leakage, they also

modify where the attacker can steer the computation: A sequence of directives to steer execution

on the source program may be unfit to steer any execution on the target program (the compiler

may change instructions and with them the available directives to steer execution also change). We

address this issue by introducing the new concept of directive transformations. Directive transfor-
mations match every executable sequence of directives in the target program with a sequence of

directives executable in the source program. We then embed directive transformations into a new

constant-time cube for speculative execution semantics (Figure 1, right). It is our contribution to

make the constant-time cube applicable for speculative semantics.

We demonstrate our proof method on two compiler transformations: Dead code elimination and

register allocation. This is the first time that these compiler passes have been formally analyzed

under speculative execution semantics and to our surprise, we found a serious vulnerability in the

transformations performed during the register allocation phase. The register allocation phase is

located in the compiler chainwhere a hardware-independent intermediate representation is replaced

by a concrete ISA. It transforms virtual registers into hardware registers and has to spill excess

registers to the stack: In Code 1, the framed instructions constitute a spill of the register bytes. The
program before register allocation (without Lines 3 and 7) has no side-channel leakage of sensitive

data under speculative execution semantics. The program after register allocation (with Lines 3

and 7) is vulnerable to the Spectre attack presented above. This vulnerability is not unique to a

singular register allocator, but more generally stems from the spilling transformation performed in

this phase. In order to fix the transformations performed, we present a novel static analysis on a

product of source program (before register allocation) and target program (after register allocation)

that finds problematic speculative leakages introduced by spilling transformations. We then fix the

problematic transformations by inserting as few mitigations as possible. The fix is automated and

applies to every existing register allocator. We then show that the fixed transformations are secure

by once more applying our proof method.

In short, we address the problem of non-interference preservation for compiler passes under

speculative execution semantics. We make the following contributions:

▶ We develop a proof method for non-interference preservation under speculative execution
semantics based on simulation relations. Technically, we address non-determinism from

speculation with directive transformations.
▶ We demonstrate our proof method on dead code elimination.

▶ We show that register allocation does not preserve non-interference under speculative execution
semantics. We confirm this for all register allocators of the LLVM compiler on code from the

widely used libsodium cryptographic library.

▶ We propose a static analysis that finds and automatically fixes the vulnerabilities introduced
by any register allocator. We apply our proof method to show that the fixed transformation

preserves speculative non-interference.
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Outline. Section 2 introduces our formulation of speculative execution semantics with leakages

and directives. Section 3 defines speculative non-interference preservation (SNiP). Our proof
method is presented in Section 4, and we apply it in Section 5 to prove that dead code elimination

preserves non-interference. We then analyze the vulnerability we found in the register allocation

transformations and present our fix in Section 6. We finish with related works in Section 7 and

discuss future prospects in Section 8.

2 Language Model
We introduce our programming language and its speculative execution semantics. A program is a

mapping 𝑃 : PC𝑃 → Inst from program counters to instructions. The initial program counter is

init ∈ PC𝑃 . Instructions 𝑖 ∈ Inst are of the following form. We denote registers by 𝑎, 𝑏, 𝑐, 𝑑 ∈ Reg
and memory variables by a, b ∈ Var . The subscripts sc ∈ PC𝑃 are the successors of 𝑖 . We may also

call sc a successor of pc instead, if it is a successor of 𝑃 pc.

𝑖 ∈ Inst F ret | nop›sc | 𝑎 ≔ 𝑏 ⊕ 𝑐›sc | 𝑎 ≔ a[𝑏]›sc | a[𝑏] ≔ 𝑐›sc | br𝑏›sct, scf | sfence›sc | slh𝑎›sc
The instructions are return (or exit), no-op, assignment, load, store, conditional branching, and the

software mitigations for Spectre, speculation fences and speculative load hardening.

Semantics. We introduce two semantics: Speculation-free 𝑠 𝛿 :𝜆 𝑡 (Rules 2.1) and speculative

S 𝛿 :𝜆 T (Rules 2.2). The transitions are labelled by leakage 𝜆 ∈ Leak and directives 𝛿 ∈ Direct. Our
leakages stem from the constant-time leakage model which leaks the addresses of memory accesses

as well as branching conditions. Directives resolve non-determinism for the speculative semantics,

i.e. when speculation starts and ends or where unsafe memory accesses (out-of-bounds) actually

access memory. Directives are considered under the attacker’s control.

A speculation-free state is a tuple (pc, 𝜌, 𝜇) ∈ State that tracks the program counter pc ∈ PC,
register contents 𝜌 : Reg → Val, and memory 𝜇 : Mem → Val. The semantics is given in Rules 2.1

and is fairly standard. Memory is structured and without dynamic allocation. Each variable a
has static size and for an offset address n ∈ Adr ⊆ Val, we write n ∈ |a| to indicate that n lies

within a’s size. The memory is Mem = {(a, n) | n ∈ |a|}. Following the leakage model, loads (load

and load-unsafe) and stores (store and store-unsafe) leak the accessed address used via ld n and
st n, and branching (branch) leaks its condition with br b. The directives lu bm (load-unsafe)

and su bm (store-unsafe) let the attacker control the address for unsafe memory accesses.

The source of speculation are br𝑏 instructions triggering branch-prediction (PHT). Our seman-

tics models speculation only for misspeculated branches. The reason for this is that a correctly

predicted branch will later commit and the resulting architectural state and the observable leakages

will coincide with an execution that did not speculate in the first place. With no difference in

correct speculation and speculation-free execution there is no need to model correctly specu-

lated branches separately, and we will use the terms speculation and misspeculation interchange-

ably. Speculation thus starts with a branch misprediction, and later ends with a rollback to the

state before speculation.
4
A speculating state tracks all active mispredictions in a stack of states

S, T , . . . ∈ SState = State∗. The semantics S 𝛿 :𝜆 T is provided in Rules 2.2. With 𝑃 𝑠 , we access 𝑠’s

instruction 𝑃 pc, when 𝑠 = (pc, 𝜌, 𝜇). The mitigation instructions sfence and slh𝑎 are speculation
sensitive, as their semantics depend on whether the current state is speculating. Their semantics is

according to our explanation in Section 1: A speculation fence sfence disallows speculation, so
sfence only executes in states currently not speculating. slh performs speculative load hardening

slh𝑎, which wipes a register only if the state is currently speculating. The remaining instructions

4
This means our semantics allows for another speculation immediately after rollback. This could be avoided with an

additional flag to store whether a state has already been mispredicted.
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Rules 2.1: Speculation-free Semantics

nop

𝑃 pc = nop›sc

(pc, 𝜌, 𝜇) •:• (sc, 𝜌, 𝜇)

asgn

𝑃 pc = 𝑎 ≔ 𝑏 ⊕ 𝑐›sc v = 𝜌 𝑏 ⊕ 𝜌 𝑐

(pc, 𝜌, 𝜇) •:• (sc, 𝜌 [𝑎 ↦→ v], 𝜇)

branch

𝑃 pc = br𝑏›sct, scf b = (0 == 𝜌 𝑏)
(pc, 𝜌, 𝜇) br:br b (scb, 𝜌, 𝜇)

load

𝑃 pc = 𝑎 ≔ a[𝑏]›sc n = 𝜌 𝑏 ∈ |a| v = 𝜇 a n

(pc, 𝜌, 𝜇) •:ld n (sc, 𝜌 [𝑎 ↦→ v], 𝜇)

store

𝑃 pc = a[𝑏] ≔ 𝑐›sc n = 𝜌 𝑏 ∈ |a| v = 𝜌 𝑐

(pc, 𝜌, 𝜇) •:st n (sc, 𝜌, 𝜇 [(a, n) ↦→ v])

load-unsafe

𝑃 pc = 𝑎 ≔ a[𝑏]›sc n = 𝜌 𝑏 ∉ |a| v = 𝜇 bm

(pc, 𝜌, 𝜇) lu bm:ld n (sc, 𝜌 [𝑎 ↦→ v], 𝜇)

store-unsafe

𝑃 pc = a[𝑏] ≔ 𝑐›sc n = 𝜌 𝑏 ∉ |a| v = 𝜌 𝑐

(pc, 𝜌, 𝜇) su bm:st n (sc, 𝜌, 𝜇 [(b,m) ↦→ v])
Rules 2.2: Speculating Semantics

step

𝑃 𝑠 speculation insensitive 𝑠 𝛿 :𝜆 𝑡

S.𝑠 𝛿 :𝜆 S.𝑡

spec

𝑃 pc = br𝑎›sct, scf b = (0 == 𝜌 𝑎)
S.(pc, 𝜌, 𝜇) sp:br¬b S.(pc, 𝜌, 𝜇).(sc¬b, 𝜌, 𝜇)

rollback

|S | ≥ 1

S.𝑠 rb:rb S

sfence

𝑃 pc = sfence›sc

(pc, 𝜌, 𝜇) •:• (sc, 𝜌, 𝜇)

slh

𝑃 pc = slh𝑎›sc v = |S | > 0 ? 0 : 𝜌 𝑎

S.(pc, 𝜌, 𝜇) •:• S.(sc, 𝜌 [𝑎 ↦→ v], 𝜇)

are speculation insensitive. step executes them on the currently speculating state, i.e. the top-most

state in the stack of states. The directives that determine whether a misprediction happens or not

are sp and br. sp demands misprediction performed by spec. A copy of the current state is pushed on

top of the current state and the program counter is set to the incorrect branch. Otherwise, branch

executes on directive br for a correct branching. rollback rolls back execution to before the last

misprediction. It can be triggered with a rb directive in any state that is currently speculating.

There is no bound on the length of a speculation.

We write S 𝑑 :𝑙 ∗ T for finite executions and S 𝑑 :𝑙 ∞ for diverging executions. We use 𝑙 and 𝑑 for

both finite and infinite sequences, i.e. 𝑙 ∈ Leak∗ ∪ Leak∞ and 𝑑 ∈ Direct∗ ∪ Direct∞. We call any

(init, 𝜌, 𝜇) initial and (pc, 𝜌, 𝜇) with 𝑃 pc = ret final. The behavior of a program consists of the

directives and events along any execution from an initial state. The speculation-free semantics is

deterministic, so its behavior is a single execution; the speculative behavior is non-deterministic

and its behavior forms a set of executions.

Beh 𝑃 𝑠 ≜

{
(𝑑 :𝑙) 𝑠 𝑑 :𝑙 ∗ 𝑡, 𝑡 final

(𝑑 :𝑙) 𝑠 𝑑 :𝑙 ∞
SBeh 𝑃 S ≜

{(𝑑 :𝑙) | S 𝑑 :𝑙 ∗ T , T final}
∪ {(𝑑 :𝑙) | S 𝑑 :𝑙 ∞}

We call 𝑃 safe if no memory access is unsafe, i.e. for every initial state 𝑠 no directives lu a n, su a n
occur in the speculation-free behavior Beh 𝑃 𝑠 . For the remaining paper we assume safe programs.

Note that this does not mean that speculating memory accesses need to be safe. As seen in Code 1,

Spectre Attacks utilize the fact that safe programs are not safe under speculative semantics.
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Example 1. Code 2 contains a simplified version of Code 1.

The secret is already in a register 𝜌 secret = v and to be stored to

buf at offset b. Assume the offset is out of bounds, 𝜌 b = 8 ∉ |buf|.
From a state 𝑠 = (2, 𝜌, 𝜇), where the first instruction was already

executed, i.e. 𝜌 a = f ≠ 0, the following transitions are available:

First, a speculation is started with spec and 𝑠 is copied with program

counter set to the incorrect branch 3. Next, store-unsafe executes
on directive su stk 0, 𝜇′ = 𝜇 [(stk, 0) ↦→ v]. The load then brings

1 a = (b < buf_size)

2 br (a)›3, 4
3 buf[b] = secret

4 bytes = stk[0]

5 br (bytes)›6, 6
6 ret

Code 2. Simplified Code 1

the secret to a register, 𝜌 ′ = 𝜌 [bytes ↦→ v]. Finally, branch leaks whether the secret is 0,

𝑠 sp:br f 𝑠.(3, 𝜌, 𝜇) su stk 0:st 8 𝑠.(4, 𝜌, 𝜇′) •:ld 0 𝑠.(5, 𝜌 ′, 𝜇′) br:br v=0 𝑠.(6, 𝜌 ′, 𝜇′) .
Speculative semantics exhibit two important properties: First, due to the constant-time leakage

model, speculative semantics reveal the program counter to the attacker: The program counter can

be deduced from the leakage of conditionals in rules branch and spec. Second, directives resolve

all non-determinism introduced by speculation. To express the first property, we write S ≡ T to

mean that S and T are at the same program point. For speculation-free states, 𝑠 ≡ pc means that 𝑠

is at program counter pc, 𝑠 = (pc, 𝜌, 𝜇). Then, 𝑠 ≡ 𝑡 means that 𝑠 and 𝑡 share the program counter,

𝑠 ≡ pc ≡ 𝑡 . For speculating states, we write S ≡ T if each pair of configurations in their speculation

stack is at the same program point. Formally, 𝜀 ≡ 𝜀, and S.𝑠 ≡ T .𝑡 if S ≡ T and 𝑠 ≡ 𝑡 . The following

two lemmas express the properties.

Lemma 1 (Program-Counter-Leakage). If two same-point states S1 ≡ S2 execute with the same
directives and leakages, S1 𝑑 :𝑙 ∗ T1, S2 𝑑 :𝑙 ∗ T2, then the resulting states are also same-point, T1 ≡ T2.

Lemma 2 (Directive-Determinism). For all S and 𝛿 there exist at most one T and 𝜆 with S 𝛿 :𝜆 T .

Notation. Similar to how we access the current instruction with 𝑃 𝑠 , we write 𝑓 𝑠 instead of 𝑓 pc
when 𝑠 = (pc, 𝜌, 𝜇) for any 𝑓 : PC → 𝐴. Further, we extend not only the ≡-relation to speculating

states, but any relation 𝑅 ⊆ State × State is extended to a relation on SState in the obvious way:

𝜀 𝑅 𝜀 and S.𝑠 𝑅 T .𝑡 , if S 𝑅 T and 𝑠 𝑅 𝑡 .

3 Non-intereference Properties
We define non-interference and non-interference preservation for our speculative semantics. We

require the initial state’s memory to be partitioned into public and sensitive data through a security

level assignment sec : Var → SecLvl to a lattice SecLvl = ({L,H}, L ≤ H). Sensitive data (H) is
considered unknown to the attacker, and we say that initial states are indistinguishable to the

attacker, (init, 𝜌, 𝜇) =sec (init, 𝜌, 𝜇′), when the memory coincides on all variables considered public.

That is, for all a ∈ Var with sec a = L, 𝜇 a = 𝜇′ a.
Our formulation of speculative non-interference (SNi, Definition 1) requires indistinguishable

initial states 𝑠1 =sec 𝑠2 to produce equal behavior. That means that for both initial states (i) the
sequences of executable directives are the same, and (ii) for each sequence of executable directives,

the observable leakage is the same. Let us explain the necessity for the first condition. As long

as the second condition is satisfied, any two executions 𝑠1
𝑑 :𝑙 T1 and 𝑠2 𝑑 :𝑙 T2 will stay in the

same program point T1 ≡ T2 (Lemma 1) and synchronously execute the same instructions. If at T1
the set of executable directives is different to those in T2, then the instruction has to be a memory

access. All other instructions have the same set of executable directives, independent of register and

memory contents. This means that one state executes an unsafe memory accesses (load-unsafe or

store-unsafe) while the other executes a safe memory accesses (load or store). However, unsafe

and safe memory accesses both leak the address used. A difference in executable directive thus

amounts to different leakage.
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Definition 1 (SNi). A program is speculatively non-interferent, 𝑃 ⊨ SNi, if all indistinguishable
initial states S1 =sec S2 have the same behavior SBeh 𝑃 S1 = SBeh 𝑃 S2.

Our goal is to prove preservation of non-interference for compiler transformations. We model

compiler transformations [.] that map a source program 𝑃 to the transformed target program [𝑃].
Transformations may modify the structure of initial states from source program 𝑃 to target pro-

gram [𝑃]. For example, a pass that realizes the architecture’s calling convention relocates function

parameters to specific registers. We require each pass to come with a relation ≺ on initial states

that identifies the initial states of [𝑃] with the initial states of 𝑃 . In order to define preservation of

non-interference, the relation has to respect sec in the following sense:
5

Definition 2. A relation ≺ ⊆ SState[𝑃 ] × SState𝑃 respects sec if every initial 𝑡 ∈ SState[𝑃 ] is
mapped to an initial 𝑠 ∈ SState𝑃 with 𝑡 ≺ 𝑠 , and for all pairs of initial states 𝑡1 ≺ 𝑠1 and 𝑡2 ≺ 𝑠2:
𝑡1 =sec 𝑡2 if and only if 𝑠1 =sec 𝑠2.

Speculative non-interference preservation for a transformation [.] asks whether for all source
programs 𝑃 , 𝑃 ⊨ SNi entails [𝑃] ⊨ SNi. However, defining preservation in this way leads to

potentially surprising outcomes. Even if the source program 𝑃 fails to be SNi, it can have some

indistinguishable initial states which produce equal leakage. One would expect that a speculative

non-interference preserving compiler transformation preserves this equal leakage to the target

program [𝑃]. But the above definition gives no such guarantee: If 𝑃 fails to be SNi, there are

no guarantees for [𝑃] at all. To counteract that, our definition of speculative non-interference

preservation is more precise [Patrignani and Guarnieri 2021]. It requires preservation of equal

leakage for every pair of source program’s and target program’s initial states individually. In

particular, this definition entails that if 𝑃 ⊨ SNi then also [𝑃] ⊨ SNi.
Definition 3 (SNiP). A program translation [.] with sec-respecting mapping ≺ is SNi-preserving,

[.] ⊨ SNiP, if all initial states 𝑡1 =sec 𝑡2 of [𝑃] with initial source states 𝑡1 ≺ 𝑠1 and 𝑡2 ≺ 𝑠2 of equal
behavior SBeh 𝑃 𝑠1 = SBeh 𝑃 𝑠2 also have equal target behavior, SBeh [𝑃] 𝑡1 = SBeh [𝑃] 𝑡2.

4 Proving Speculative Non-interference Preservation
We present our proof method for speculative non-interference preservation. We introduce snippy
simulations which ensure that a code transformation preserves speculative non-interference:

Theorem 2. If for all 𝑃 there is a snippy simulation (≺,◁) between [𝑃] and 𝑃 , then [.] ⊨ SNiP.
In order to reach that goal, we first define simulations that transform directives to cope with

the fact that compilers do not preserve executable sequences of directives. We then introduce

the constraints a snippy simulation needs to additionally satisfy and finally prove Theorem 2.

This reduces proving a transformation SNiP to proving that it has a snippy simulation for each

program 𝑃 . In Section 5, we show how to craft a snippy simulation that is parametric in 𝑃 , reducing

proof effort to a once-and-for-all proof.

4.1 Simulation with Directive Transformation
The new feature in our work is directive transformation. Conceptually, a simulation between the

target program [𝑃] and the source program 𝑃 shall replay any execution of [𝑃] in 𝑃 . A directive

sequence 𝑑 selects a single execution in [𝑃] (Lemma 2). Our simulation wants to select a corre-

sponding execution in 𝑃 . However, the directives 𝑑 may not be executable in 𝑃 , or it might select

an inappropriate execution. Instead, a different sequence of directives may be necessary on the

source program, since transformations [.] are not designed to preserve them.

5
One could also have a second security assignment on the target program, but for simplicity we assume they are the same.
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Source 𝑃1 if (i < buf_size)

2 a = buf[i];

3 a = 0;

4 ret;

Target [𝑃]a if (i < buf_size)

b nop;

c a = 0;

d ret;

Code 3. Example code transformation from dead code elimination.

Example 3. We accompany our formal development with the example transformation in Code 3,

where an unnecessary a ≔ buf[i] instruction is replaced by a nop. Consider an initial target state

𝑡 = (a, 𝜌, 𝜇) where 𝜌 i ∉ |buf|, and the source state 𝑠 = (1, 𝜌, 𝜇). The directives sp.•.• are executable
from 𝑡 . But the same sequence cannot be executed from 𝑠: An unsafe load necessitates a directive

lu am for any a and m. Thus, a transformed sequence of directives sp.lu am.• is executed.
A simulation with directive transformation (dt−sim) is a relation on states T ≺ S where a

target state T ∈ SState[𝑃 ] is related to a source state S ∈ SState𝑃 . The directive transformation is

a family of relations ⊳T≺S ⊆ Direct∗ × Direct∗. We characterize dt−sim in Rules 4.1. Consider any

states T ∈ SState[𝑃 ] and S ∈ SState𝑃 with T ≺ S. To express that T is simulated by S means the

following: Either both states are final (final), or we have to explore all sequences of executable

directives T 𝑑 :𝑙 ∗ V in [𝑃] up to some bound (tgt). For each explored sequence of directives we

apply the directive transformation ⊳T≺S . Then, we need to replay the execution with a sequence of

executable directives S 𝑒 :𝑘 ∗ U in 𝑃 (src), so that V ≺ U . Formally, we write ⟨≺, ⊳ ⊢ T ≺t S : 𝑑⟩ to
express that we are exploring executions in [𝑃], have already seen a sequence of directives 𝑑 and

arrived at target state T . We can now either bound the exploration with direct-tf, or continue

exploration via tgt. With direct-tf we look up a directive transformation for the explored 𝑑 and

swap to ⟨≺, ⊳ ⊢ V ≺s S : 𝑒⟩. This states that we are seeking to replay the explored sequence with

its transformation 𝑒 from S. If 𝑒 is executable S 𝑒 :𝑘 ∗ U in 𝑃 , coind checks that the states reached

from exploration in [𝑃] and replay in 𝑃 are again related, V ≺ U . The notions of ≺ and ≺ make

sure that both exploration in [𝑃] and replaying in 𝑃 take at least one execution step. The guarded

version ≺ requires at least one application of tgt or src to become the unguarded version ≺ .

Only then, direct-tf and coind become applicable. We write ≺≺ for any of ≺ or ≺ .

Definition 4 (dt−sim). A simulation with directive transformation (≺,◁) consists of a relation
≺ ⊆ SState[𝑃 ] ×SState𝑃 and a family ◁ = (⊳T≺S) (T ,S) ∈≺ so that for all initial 𝑡 ∈ SState[𝑃 ] , there is an
initial 𝑠 ∈ SState𝑃 with 𝑡 ≺ 𝑠 , and for all T ≺ S, ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝜀⟩ can be proven in Rules 4.1.6

Example 4. Consider once again the transformation in Code 3 and the initial states 𝑡 and 𝑠 from

Example 3. Further, let 𝑢 = (4, 𝜌 ′, 𝜇) and 𝑣 = (d, 𝜌 ′, 𝜇) with 𝜌 ′ = 𝜌 [a ↦→ 0]. We want to prove

that 𝑡 ≺ 𝑠 is justified, i.e. we need to construct ⊳𝑡≺𝑠 so that ⟨ ≺ , ⊳𝑡≺𝑠 ⊢ 𝑡 ≺t 𝑠 : 𝜀⟩ is derivable. We

drop the subscript and just write ⊳. Exploration via tgt yields (among others) two sequences of

directives executable from 𝑡 in [𝑃]: sp.•.• as in Example 3 and br. The corresponding execution

takes us to 𝑡 sp.•.•:br f.•.• ∗ 𝑡.𝑣 and 𝑡 br:br f 𝑣 , respectively. After exploration with tgt, we are thus

left to prove ⟨ ≺ , ⊳ ⊢ 𝑡.𝑣 ≺t 𝑠 : sp.•.•⟩ and ⟨ ≺ , ⊳ ⊢ 𝑣 ≺t 𝑠 : br⟩. For the first sequence, we transform
the directives as in Example 3: sp.lu sec 0.• ⊳ sp.•.•. For the other case, we do not need a transfor-

mation, so br ⊳ br. With direct-tf, we are left with deriving ⟨ ≺ , ⊳ ⊢ 𝑡.𝑣 ≺s 𝑠 : sp.lu sec 0.•⟩ and
⟨ ≺ , ⊳ ⊢ 𝑣 ≺s 𝑠 : br⟩. Indeed, 𝑃 can replay the directives with 𝑠 sp.lu sec 0.•:br f.ld n.• ∗ 𝑠.𝑢 using src,

where n = 𝜌 i and 𝑠 br:br f 𝑢, respectively. To now utilize coind we need 𝑣 ≺ 𝑢 and 𝑡.𝑣 ≺ 𝑠.𝑢. Each

would again have to be justified independently. Justifying the first is easy with final, while the

other needs another application of tgt, direct-tf, and src and can then utilize 𝑡 ≺ 𝑠 .

6
Our way to define simulations is inspired by recent work to unify stuttering [Cho et al. 2023].
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Rules 4.1: Characterizing Simulations

tgt

∀T 𝛿 :𝜆 V . ≺ , ⊳ ⊢ V ≺t S : 𝑑.𝛿 T not final

≺≺ , ⊳ ⊢ T ≺t S : 𝑑

direct-tf

≺ , ⊳ ⊢ T ≺s S : 𝑒 𝑒 ⊳ 𝑑

≺ , ⊳ ⊢ T ≺t S : 𝑑

src

∃S 𝛿 :𝜆 U . ≺ , ⊳ ⊢ T ≺s U : 𝑒

≺≺ , ⊳ ⊢ T ≺s S : 𝛿.𝑒

coind

T ≺ S

≺ , ⊳ ⊢ T ≺s S : 𝜀

final

T , S final

≺ , ⊳ ⊢ T ≺t S : 𝜀

Rules 4.2: Simulation Intervals

sync

T 𝑑 :𝑙 ∗ V T ≺ S V ≺ U S 𝑒 :𝑘 ∗ U
⟨T ≺t S⟩

𝑑⇐= ⟨V ≺t S⟩
𝑒 ⊳𝑑⇐==== ⟨V ≺s S⟩

𝑒⇐= ⟨V ≺s U ⟩
S 𝑒 :𝑘

s
U (S, T ) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U ,V ) T 𝑑 :𝑙

t
V

Simulation Intervals. Our goal is to formulate snippy simulations as a constraint on simulations

with directive transformation. We define it with simulation intervals. A simulation interval for

states T ≺ S is a pair of an explored sequence of directives from T in [𝑃] and the corresponding

replay from S in 𝑃 . Formally, we define simulation intervals through a synchronized product,

whose transitions are the simulation intervals. The states of the synchronized product are of shape

(S, T ) so that T ≺ S. Its transitions are of the form (S, T ) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U ,V ), where 𝑒 is the directive
transformation of an explored 𝑑 in [𝑃]. In order to formally define the transition relation, consider

a proof tree that justifies T ≺ S, i.e. that derives ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝜀⟩. We use the notation

⟨T ≺t S⟩
𝑑⇐= ⟨V ≺t S⟩

𝑒 ⊳𝑑⇐==== ⟨V ≺s S⟩
𝑒⇐= ⟨V ≺s U ⟩

to state that the proof tree contains the nodes ⟨ ≺ , ⊳S≺T ⊢ V ≺t S : 𝑑⟩, ⟨ ≺ , ⊳S≺T ⊢ V ≺s S : 𝑒⟩, and
⟨ ≺ , ⊳S≺T ⊢ V ≺s U : 𝜀⟩ on one path. In particular, this means that T 𝑑 :𝑙 ∗ V and S 𝑒 :𝑘 ∗ U for

appropriate 𝑙 , 𝑘 , and 𝑒 ⊳T≺S 𝑑 . We define a synchronized transition relation that executes both in a

single step.

Definition 5. Given a simulation (≺,◁), its simulation interval transition is defined by Rule sync.

: ⊳ : ⊆ ≺ × Direct∗ × Leak∗ × Direct∗ × Leak∗ × ≺

sync further defines the transition relations
:

s
and

:

t
as the projection of simulation intervals

to source and target program. Transitive closures of the transition relations are defined as usual.

We say that a simulation is lock-step if simulation intervals are single step:
:

t
, :

s
⊆ :

.

Example 5. The simulation intervals resulting from Example 4 for 𝑡 ≺ 𝑠 are:

(𝑠, 𝑡) sp.lu secret 0.• : br f.ld n.• ⊳ sp.•.• : br f.•.• (𝑠.𝑢, 𝑡.𝑣) (𝑠, 𝑡) br : br f ⊳ br : br f (𝑢, 𝑣)

The following lemma states that our formulation of simulations is sound. That is, we find all

of [𝑃]’s behavior in the projection of the simulation interval transition relation
:

t
. This lets us

perform (co-)induction on SBeh [𝑃] S with :

t
rather than

:
, which we will utilize in our proof of

Theorem 2. The same is not true for the source program’s behavior and
:

s
.

Lemma 3. If T occurs in ≺, SBeh [𝑃] T = {(𝑑 :𝑙) | T 𝑑 :𝑙 ∗
t
X ,X final} ∪ {(𝑑 :𝑙) | T 𝑑 :𝑙

t
∞}.
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4.2 Snippy Simulations
So far, simulations are very liberal: Simulation merely

require that a sequence of directives in [𝑃] can be trans-

formed via◁ into a sequence of directives in 𝑃 . The length

and contained directives can change when applying ◁
and there are no restrictions on how the leakage changes

when applying ◁. In this section, we establish snippy
simulations, a constant-time cube constraint [Barthe, Gré-

goire, and Laporte 2018] on simulations for speculative

semantics that entails SNiP when satisfied.

T1

T2

S1

S2

V1

V2

U1

U2

≻

≻

≻
𝑒 :𝑘

𝑒 :𝑘

≻
𝑑 :𝑙⊳

𝑑 :𝑙⊳

Fig. 2. Whenever the black conditions are
met, a snippy simulation ≺ also explores
the purple execution and simulates it by
the source execution. Gray conditions fol-
low from the semantics.

The intuition for snippy simulations can be explained

as follows. In order to prove that a transformation [.]
satisfies SNiP, we are given a source program 𝑃 and the

target program [𝑃], as well as four initial states: Two
target initial states 𝑡1 ≡ 𝑡2 and two simulating source

states 𝑡1 ≺ 𝑠1 and 𝑡2 ≺ 𝑠2, so that SBeh 𝑃 𝑠1 = SBeh 𝑃 𝑠2.
The goal is to prove that the equality of behavior carries

over to the target program. Given a simulation (≺,◁) we
so far know how to replay any sequence of directives 𝑑 from 𝑡1 transformed on 𝑠1 (Lemma 3).

Consider a simulation interval (𝑠1, 𝑡1) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U1,V1). Due to same behavior of 𝑠1 and 𝑠2, the

source directives can also be executed from 𝑠2, 𝑠2
𝑒 :𝑘 U2. Snippy simulations now state that, in

such a situation, the simulation interval for 𝑠2 and 𝑡2 also contains (𝑠2, 𝑡2) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U2,V2). That
means, 𝑡2 can also execute 𝑑 and produce the same leakage. And further, (≺,◁) does also explore 𝑑

from 𝑡2, not a longer or shorter sequence. Figure 2 demonstrates the constraint in the general case,

where states need not be initial. The simulation interval of S1 and T1 and the ability for another

source state S2 to mimic the behavior are in black. The constraint is in purple: (≺,◁) has to also

provide the same simulation interval for any other state T2 ≺ S2 at the same program point as T1.
With snippy simulations defined, we conclude the section with the proof of Theorem 2.

Definition 6. A snippy simulation (≺,◁) is sec-respecting and satisfies the diagram in Figure 2.
That is, for all S1 ≡ S2 and T1 ≡ T2 with T1 ≺ S1, T2 ≺ S2, and (S1, T1) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U1,V1),

S2 𝑒 :𝑘 ∗ U2 implies the existence of V2 with (S2, T2) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U2,V2) .

Proof of Theorem 2. Consider a program 𝑃 and a snippy simulation (≺,◁). We need to prove

the following: For all initial 𝑡1 =sec 𝑡2 with 𝑡1 ≺ 𝑠1 and 𝑡2 ≺ 𝑠2: When SBeh [𝑃] S1 = SBeh [𝑃] 𝑠2,
then also SBeh [𝑃] 𝑡1 = SBeh [𝑃] 𝑡2. We claim a stronger statement: Whenever T1 ≺ S1, T2 ≺ S2,
S1 ≡ S2, and T1 ≡ T2, and SBeh 𝑃 S1 = SBeh 𝑃 S2: Then SBeh [𝑃] T1 ⊆ SBeh [𝑃] T2 holds.
This is sufficient: Consider initial target states 𝑡1 =sec 𝑡2 as well as source states 𝑡1 ≺ 𝑠1 and 𝑡2 ≺ 𝑠2

with SBeh 𝑃 𝑠1 = SBeh 𝑃 𝑠2. Initial states are all at the same program point, so the requirements of

the claim are satisfied and SBeh [𝑃] 𝑡1 ⊆ SBeh [𝑃] 𝑡2 holds. By symmetry, SBeh [𝑃] 𝑡1 = SBeh [𝑃] 𝑡2.
We prove our claim coinductively on SBeh [𝑃] T1 split into simulation intervals (Lemma 3). The

case of a final T1, i.e. SBeh [𝑃] T1 = {(𝜀 :𝜀)}, T2 ≡ T1 is final, too, and thus (𝜀 :𝜀) ∈ SBeh [𝑃] T2.
In the (co-)inductive case, let (𝑒.𝑑 :𝑘.𝑙) ∈ SBeh [𝑃] T1 with T1 𝑒 :𝑘

t
V1 from a simulation interval

(S1, T1) 𝑓 :𝑚 ⊳ 𝑒 :𝑘 (U1, V1). From SBeh 𝑃 S1 = SBeh 𝑃 S2 follows S2 𝑓 :𝑚 ∗ U2. Lemma 1 gives U1 ≡ U2

and same behavior of S1 and S2 entails SBeh 𝑃 U1 = SBeh 𝑃 U2. Snippyness then yields the simulation

interval (S2, T2) 𝑓 :𝑚 ⊳ 𝑒 :𝑘 (U2,V2), i.e. T2 𝑒 :𝑘 ∗ V2. Lemma 1 gives V1 ≡ V2. We can now apply

(co-)induction hypothesis for SBeh [𝑃] V1 ⊆ SBeh [𝑃] V2, which implies (𝑒.𝑑 :𝑘.𝑙) ∈ SBeh [𝑃] V2.

Together with T2 𝑒 :𝑘 ∗ V2, we arrive at (𝑒.𝑑 :𝑘.𝑙) ∈ SBeh [𝑃] T2. □
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5 Case Study: Dead Code Elimination
In this section, we prove that dead code elimination [.]dc satisfies SNiP as a demonstration of the

proof method and a warm-up for the next section, where we tackle register allocation transfor-

mations. We first give a short rundown on the transformation of [.]dc before crafting a snippy

simulation that is parametric in the source program 𝑃 . Dead code elimination is responsible for

removing instructions from 𝑃 whose computed values are not utilized anywhere. It is the result

of a data flow analysis that finds removable instructions. Typically, the analysis follows constant

propagation in order to identify as many aliasing memory accesses as possible. To support that,

we assume that load and store instructions 𝑎 ≔ a[n] and a[n] ≔ 𝑐 can hold a constant address

n ∈ Adr instead of a register, where we require n ∈ |a|. For the remaining section, fix an arbitrary

program 𝑃 with entry point init.

Flow analysis. The static analysis for dead code elimination is a Liveness analysis. Since we will

later define our own flow analysis when fixing the weaknesses in register allocation, we recall flow

analysis in a more general setting. A flow analysis searches for a fixed-point solution to a system

of flow inequalities in order to obtain approximate knowledge about all executions of a program.

Formally, a forward/backward flow analysis finds a solutionX to the inequalities (fwd)/(bwd), where

pc and sc range over program counters so that pc is a predecessor to sc.

X sc ≥ 𝐹pc (X pc)
X init ≥ X0

(fwd)

X pc ≥ 𝐹sc (X sc)
X pc ≥ X0 𝑃 pc = ret

(bwd)

Flow values stem from a semi-lattice (𝐿, ≤) and a solution X : PC → 𝐿 finds a flow value for

each program point. In case of a forward analysis, X pc denotes the flow value at pc before the
execution of 𝑃 pc. For a backward analysis X pc denotes the flow value at pc after the execution of

𝑃 pc. The flow value X0 is the initial flow value of entry / exit points of the program. The functions

𝐹pc : 𝐿 → 𝐿 are monotonic and constitute the transfer of the flow values along instructions.

A flow analysis can have additional constraints. Additional constraints are of shape X pc ≤ 𝑙 .

They additionally require flow values of certain program counters pc not to exceed a bound 𝑙 ∈ 𝐿. If

the least solution to the flow analysis does not satisfy the additional constraints, no solution does.

Dead Code Elimination. Liveness analysis is a backward flow analysis. The flow values are the sets

of registers and memory locations that are live at any given program point in that their current

value could be used later. The flow lattice is 𝐿 = P(Reg ∪Mem), and the initial flow value at any

exit point is X0 = Reg ∪Mem, but can be different dependent on calling conventions. The transfer

functions are folklore, so we instead formulate the guarantee that comes with a solution. Note that

the guarantee holds for speculative semantics, too, because the analysis is branch-independent.

Proposition 6. Whenever 𝑠 𝑑 :𝑙 ∗ U .𝑢 in 𝑃 , if 𝑃 𝑢 uses a register 𝑏, then 𝑏 ∈ 𝐹𝑢 (X𝑢), and if 𝑃 𝑢
loads a memory location a with offset n, then (a, n) ∈ 𝐹𝑢 (X𝑢).

The transformation [.]dc uses a Liveness analysis solution X of the backward flow inequalities

(bwd) to remove unnecessary instructions. A function dc : 𝐿 → Inst → Inst inspects the flow value

at a given program point and removes an instruction if it writes a register or memory location that is

not live. The transformation of 𝑃 is then defined per program point with [𝑃]dc pc = dc (X pc) (𝑃 pc).

dc 𝑙 (𝑎 ≔ 𝑏 ⊕ 𝑐›sc) =
{
nop›sc 𝑎 ∉ 𝑙

𝑎 ≔ 𝑏 ⊕ 𝑐›sc 𝑎 ∈ 𝑙
dc 𝑙 (𝑎 ≔ a[𝑥]›sc) =

{
nop›sc 𝑎 ∉ 𝑙

𝑎 ≔ a[𝑥]›sc 𝑎 ∈ 𝑙

dc 𝑙 (a[𝑥] ≔ 𝑐›sc) =
{
nop›sc 𝑥 = n, (a, n) ∉ 𝑙

a[𝑥] ≔ 𝑐›sc otherwise

dc 𝑙 𝑖 = 𝑖 for other 𝑖
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Dead Code Simulation. We now craft a snippy simulation (≺,◁) between [𝑃]dc and 𝑃 . The sim-

ulation is parametric in 𝑃 as it depends on the Liveness analysis X. That way, we craft a single

simulation relation and provide one for every source program 𝑃 and its transformation [𝑃]dc. First,
we define the simulation 𝑡 ≺ 𝑠 and directive transformation ⊳𝑡≺𝑠 for speculation-free states, and
afterwards lift them to speculating states. The simulation identifies states whenever they differ

only on dead registers and memory locations:

(pc, 𝜌, 𝜇) ≺ (pc, 𝜌 ′, 𝜇′) ⇐⇒
∀𝑎 ∈ 𝐹pc (X pc). 𝜌 𝑎 = 𝜌 ′ 𝑎

∧ ∀(a, n) ∈ 𝐹pc (X pc). 𝜇 a n = 𝜇′ a n

In order to define the directive transformation ⊳𝑡≺𝑠 , we need to think about the shape of simulation

intervals. Because [.]dc leaves the control flow fully intact, we can choose to create a lockstep simu-

lation. With that, we can choose ⊳𝑡≺𝑠 to be the identity relation on Direct and add transformations

where [.]dc replaced an instruction with nop. Let 𝑖 = 𝑃 𝑠 and 𝑖′ = [𝑃]dc 𝑡 . We set:

⊳𝑡≺𝑠 = idDirect ∪

{(lu bm, •) | b ∈ Var,m ∈ Adr} 𝑖 = 𝑎 ≔ a[𝑏]›sc, 𝑖′ = nop›sc

{(su bm, •) | b ∈ Var,m ∈ Adr} 𝑖 = a[𝑏] ≔ 𝑐›sc, 𝑖′ = nop›sc

∅ otherwise

For speculating states, we simply lift ≺ by setting T .𝑡 ≺ S.𝑠 if T ≺ S and 𝑡 ≺ 𝑠 (and 𝜀 ≺ 𝜀 for the

base case). For the directive transformation, we delegate to the executing states ⊳T.𝑡≺S.𝑠 = ⊳𝑡≺𝑠 .

Theorem 7. (≺,◁) is a snippy lockstep simulation.

Proof. We need to prove that (≺,◁) (i) is a simulation (Definition 4), (ii) is snippy (Definition 6),
and (iii) respects sec (Definition 2). The first part (i) is considerably easier than in the general case,

because the simulation is lockstep, i.e. both 𝑃 and [𝑃]dc only perform a single step before finding

new states in ≺. Consider T1.𝑡1 ≺ S1.𝑠1, T2.𝑡2 ≺ S2.𝑠2, T1.𝑡1 ≡ T2.𝑡2 S1.𝑠1 ≡ S2.𝑠2 and T1.𝑡1 𝛿 :𝜆 V1,

where 𝑡1 ≡ 𝑡2 ≡ 𝑠1 ≡ 𝑠2 ≡ pc. We need to show that there is 𝛾 ⊳𝑡1≺𝑠1 𝛿 so that S1.𝑠1 𝛾 :𝜅 U1 and

V1 ≺ U1. Second we prove snippyness (ii): We additionally consider the existence of S2.𝑠2 𝛾 :𝜅 U2.

We then need to show that T2.𝑡2 𝛿 :𝜆 V2 and 𝛾 ⊳𝑡2≺𝑠2 𝛿 (which implies (𝑠2, 𝑡2) 𝛿 :𝜆 ⊳𝛾 :𝜅 (𝑢2, 𝑣2)).
We first split off the case 𝛿 = 𝛾 = rb, where |T1 | > 0. For (i), we need to prove S1.𝑠1 rb:rb S1

because rb ⊳𝑡1≺𝑠1 rb. But T1 ≺ S1 implies |T1 | = |S1 | > 0 which meets the premise for the transition.

For (ii), additionally consider S2.𝑠2 rb:rb S2. We need to show T2.𝑡2 rb:rb T2. With the same

argument as before, |T1 | = |S1 | = |S2 | = |T2 | > 0 satisfies the premise for the transition. Proving (i)
and (ii) in the case of 𝛿 ≠ rb ≠ 𝛾 is a large case distinction on ⟨𝑃 pc, [𝑃]dc pc⟩.
▶ ⟨𝑎 ≔ a[𝑏]›sc, nop›sc⟩ There are two subcases: 𝜌𝑠1 𝑏 = n is within |a| or not. We present the

subcase n ∉ |a|. For (i), consider 𝑡1 •:• 𝑣1. We need to show that lu bm is executable in 𝑠1,

because lu bm ⊳𝑡1≺𝑠1 •. Indeed, we have 𝑠1 lu bm:ld n 𝑢1 because 𝜌𝑠1 𝑏 = n ∉ |a|. We also need

to show that 𝑣1 ≺ 𝑢1. From the definition of dc, we know 𝑎 ∉ X pc because the instruction was

replaced by nop. The transfer 𝐹pc (X pc) is again X pc because a load to a dead register makes no

registers or memory locations live. Together with (bwd), we get 𝐹pc (X pc) = X pc ⊇ 𝐹sc (X sc).
Registers and memory of 𝑡1 and 𝑣1 are equal (nop) and 𝑠1 and 𝑢1 only differ on 𝑎. This means

𝑡1 ≺ 𝑠1 implies 𝑣1 ≺ 𝑢1 because 𝑎 ∉ X pc ⊇ 𝐹sc (X sc). For (ii), further consider 𝑠2 lu bm:ld n 𝑢2.

We need to show that 𝑡2
•:• 𝑣2 and 𝑣2 ≺ 𝑢2. The former is immediate from the semantics. For

the latter, we apply the same arguments as in (i). All other cases are very similar.

For (iii), we need to restrict our attention to Liveness analysis where all registers and memory

locations are initially live.
7
Every solution X is easily modified to satisfy this restriction. The proof

that ≺ respects sec is then straightforward: For initial states 𝑡 and 𝑠 , 𝑡 ≺ 𝑠 if and only if 𝑡 = 𝑠 . □
7
A weaker formalization of sec-respecting relations would lift this restriction, but incur more presentational overhead.
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6 Fixing Weaknesses in Register Allocation
Register allocation happens in the compilation phase that moves from an IR to the hardware

instructions of the target architecture. It moves from the unbounded number of virtual registers

occurring in the IR version of the program to the finite set of hardware registers. In order to do so,

register allocation performs a relocation of register contents. For each program point, a subset of

the virtual registers is selected to be kept as hardware registers and the remaining virtual registers

are spilled to the stack. The literature describes various approaches towards selecting the set of

registers to be spilled [Chaitin et al. 1981; Traub et al. 1998; Poletto and Sarkar 1999; Tichadou and

Rastello 2022], leading to different transformations depending on the chosen algorithm. In this

paper, we express the transformations from register allocation more generally as a set of constraints.

A transformation constitutes a viable register allocation if it satisfies the constraints. Practical

allocation algorithms produce viable allocations making our results apply to all of them.

We first present the constraints a register allocation transformation needs to satisfy. We then

demonstrate how the transformation violates speculative non-interference preservation. We con-

tinue to develop a static analysis that finds potential violations. Finally, we fix the violations and

craft a snippy simulation for the fixed transformation and prove that it satisfies SNiP.

6.1 Register Allocation
Register allocation transforms a source program 𝑃 by inserting shuffle instructions.

si ∈ Shuffle Inst F 𝑎 ≔ 𝑏›sc | 𝑎 ≔ stk[l]›sc | stk[l] ≔ 𝑏›sc | slh𝑎›sc | sfence›sc
The instructions extend Inst and are inserted in between the existing instructions in order to main-

tain the register relocation with the instructions move 𝑎 ≔ 𝑏, fill 𝑎 ≔ stk[l], and spill stk[l] ≔ 𝑏.

We also include slh𝑎 and sfence because we need them later to fix the transformation. The

semantics are as expected: A move 𝑎 ≔ 𝑏 relocates contents from 𝑏 to 𝑎, 𝑎 ≔ stk[l] reloads a
spilled register from a constant address l ∈ Adr in the stack, and stk[l] ≔ 𝑏 spills a register to the

stack. We model the stack frame’s section used for spilled registers with a fresh memory variable

stk not occurring in 𝑃 . We assume that stk has appropriate size to fit all spilled registers and is

typed sec stk = L. Shuffle code is always straight line, so for a shuffle sequence sh ∈ Shuffle Inst∗

we introduce the notion 𝑃 pc = sh›sc to express that 𝑃 executes sh and then ends in sc.

Constraints for a valid transformation. Register allocation inserts shuffle code between existing

instructions to realize the register relocation. Formally, a target program [𝑃]ra : PC [𝑃 ]ra → Inst is
a register allocation if there exist functions Φ and Ψ. The first is an injection Φ : PC𝑃 → PC [𝑃 ]ra
of the original instructions of 𝑃 to their counterparts in [𝑃]ra. The second function is a relocation

mapping Ψ : PC [𝑃 ]ra → Reg ⇀ (Reg ∪ Stk), where Stk = {(stk, l) | l ∈ |stk|} ⊆ Mem is the stack

frame for spilled variables. At each program counter pc′ ∈ PC [𝑃 ]ra , Ψ pc′ 𝑎 is the relocation of the

virtual register 𝑎 from 𝑃 to the hardware register or stack location in [𝑃]ra.8 The functions are
subject to the following conditions. Instruction matching: The Φ-injected instructions must operate

on the same registers up to relocation by Ψ. Shuffle conformity: The relocation Ψ must conform to

the (shuffle) instructions in [𝑃]ra. Obeying Liveness: Every live register in 𝑃 is mapped under Ψ
and no location is doubly allocated. To state the conditions formally, we introduce notation for the

defined and used registers of an instruction. A register 𝑏 is used by 𝑖 ∈ Inst if the register is read
out by the corresponding rule in Rules 2.1. Similarly, 𝑎 is defined by 𝑖 , if it is written in that rule.

For example, 𝑎 ≔ a[𝑏] uses {𝑏} and defines {𝑎}.
uses𝑖 = {𝑏 | 𝑏 ∈ Reg is used by 𝑖} def𝑖 = {𝑎 | 𝑏 ∈ Reg is defined by 𝑖}

8
In general, the content of a register 𝑎 could be relocated to multiple locations. For simplicity of presentation, we forbid that.
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Source 𝑃1 a = (b < buf_size)

2 br (a)›3, 4
3 buf[b] = secret

4 br (bytes)›5, 5
5 ret

Target [𝑃]raa a = (b < buf_size)

b stk[0] = bytes

c br (a)›d, e
d buf[b] = secret

e a = stk[0]

f br (a)›g, g
g ret

Code 4. An Example register allocation. Lines b and e are the inserted shuffle code.

Instruction Matching requires that source instructions from 𝑃 reappear in [𝑃]ra: For every pc ∈
PC𝑃 and pc′ = Φ pc, 𝑖 = 𝑃 pc has to match with 𝑖′ = [𝑃]ra pc′. To match, the instruction 𝑖′ must

be the same, but registers 𝑏 ∈ uses𝑖 are replaced with Ψ pc′ 𝑏 ∈ Reg. Similarly, registers 𝑎 ∈ def𝑖
are replaced with Ψ sc′ 𝑎 ∈ Reg, where sc′ is the successor of pc′. Defined registers are found in

the successor’s relocation, because they are live only after executing 𝑖′. All other instructions at
program points pc′ ∉ img(Φ) must be shuffle instructions. Given 𝑠 ∈ State𝑃 and 𝑡 ∈ State[𝑃 ]ra , we
write 𝑠 Φ 𝑡 when 𝑠 ≡ pc and Φ pc ≡ 𝑡 . We extend the notation to S Φ T in the expected way.

Shuffle Conformity requires that the relocation Ψ is upheld by the instructions in [𝑃]ra. Consider
an instruction 𝑖′ = [𝑃]ra pc′ at pc′ ∈ PC [𝑃 ]ra and let sc′ be a successor. First, registers and stack

locations untouched by 𝑖′ must stay at the same location inΨ: For any register𝑑 withΨ pc′ 𝑑 ∉ uses𝑖′
and Ψ sc′ 𝑑 ∉ def𝑖′ , Ψ pc′ 𝑑 = Ψ sc′ 𝑑 . Second, if 𝑖′ is a shuffle instruction there are additional

requirements: Shuffle instructions move one source register’s content from one location in [𝑃]ra
to another. As a consequence, if 𝑖′ is a shuffle instruction, there must be a source register 𝑎

being moved and the location moved to must be free. We write freer′ 𝑑 ′ and freer′ (stk, l) for
𝑑 ′, (stk, l) ∉ img(Ψ r′). Dependent on 𝑖′, we add the following constraints, (𝑎 is the source register):

𝑖′ = 𝑎′ ≔ 𝑏′›sc′ :

𝑖′ = 𝑎′ ≔ stk[l]›sc′ :
𝑖′ = stk[l] ≔ 𝑏′›sc′ :

𝑖′ = slh𝑎′›sc′ :

∃𝑎.Ψ pc′ 𝑎 = 𝑏′ ∧ Ψ r′ 𝑎 = 𝑎′ ∧ freepc′ 𝑎′

∃𝑎.Ψ pc′ 𝑎 = (stk, l) ∧ Ψ r′ 𝑎 = 𝑎′ ∧ freepc′ 𝑎′

∃𝑎.Ψ pc′ 𝑎 = 𝑏′ ∧ Ψ r′ 𝑎 = (stk, l) ∧ freepc′ (stk, l)
∃𝑎.Ψ pc′ 𝑎 = 𝑎′ ∧ Ψ r′ 𝑎 = 𝑎′

Obeying Liveness means that all live variables in 𝑃 must be allocated. There must be a Liveness

solutionX (Proposition 6) for 𝑃 so that for all locations pc ∈ PC𝑃 , all registers 𝑎 ∈ X pc live at pc are
allocated, i.e. Ψ (Φ pc) 𝑎 ≠ ⊥. Further, a location cannot be allocated twice, i.e. for all pc ∈ PC [𝑃 ]ra ,
Ψ pc forms an injection on the live registers at pc.

Definition 7. A transformation from 𝑃 to [𝑃]ra is a register allocation if there are instruction
matching, shuffle conform, and Liveness obeying (Φ,Ψ).

Example 8. Code 4 contains an example register allocation. It is a simplified version of Code 1,

which still exhibits the weakness of register allocation. The left program starts with a secret value

in register secret and public values in b and bytes. It stores the secret into buf when the address

b is in bounds of |buf|. Then, it leaks bytes at 4. The right program is after register allocation.

Register allocation has inserted the spill and fill instructions b and e. The instruction injection Φ can

be seen from side by side alignment. It is the mapping {1 ↦→ b, 2 ↦→ c, 3 ↦→ d, 4 ↦→ f, 5 ↦→ g}. The
register mapping Ψ at a and b makes no relocations: Ψ a = Ψ b = idReg . The spill instruction at b
relocates bytes to the stack. It remains spilled from c to e: Ψ c bytes = . . . = Ψ e bytes = (stk, 0).
Further, because a is not live after 2 it is not allocated from c to g: Ψ c a = . . . = Ψ g a = ⊥. Instead,
the register allocation reuses a in f: The fill instruction at e relocates bytes to a: Ψ f bytes = a.
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6.2 Register Allocation is not SNiP
Transformations that satisfy the constraints for a valid register allocation are known to be non-

interference preserving, provided that the semantics are speculation-free [Barthe, Blazy, Grégoire,

et al. 2019; Barthe, Grégoire, Laporte, and Priya 2021]. We first assumed that the same is true for

speculative semantics as well, because register allocation only inserts shuffle instructions. While

shuffle instructions produce leakages, they are constant address loads and stores which means they

only leak constant values. To our surprise, when we tried to form a snippy simulation relation for

register allocation, we realized that it was not SNiP. Code 4 demonstrates a minimalistic example

for how register allocation introduces weaknesses into [𝑃]ra. The left program is SNi, because the
leakage at Line 4 depends on the register bytes that holds a public value untouched since the start

of the execution. The right program, however, is susceptible to the same attack as described in

Section 1 for Code 1: Speculatively executing c when b holds a value out of |buf| can store the

secret value from secret to stk[0]. That value is then loaded at e into a and leaked at f. The fault
for this attack is not with the constant leakage of shuffle instructions. The weakness occurs from

spilling itself, i.e. from the relocation of registers to memory: Conceptually, speculative execution

can access memory everywhere because it performs unsafe memory accesses. But it cannot read

or write register contents. Register allocation moves registers into memory, effectively granting

unsafe memory operations access to spilled registers.

We were able to reproduce the weakness with a real compiler. Code 4 is inspired by Code 1 which

is an excerpt of the libsodium function chacha20_encrypt_bytes with slight modifications. The

function is responsible for encryption of data using the Chacha20 stream cipher and, similar to

Code 1, first copies the data into a stack-local buffer before executing the encryption algorithm on it.

Our tests were done on LLVM 17, and we tested each of LLVM’s register allocators (i.e. basic, greedy,
fast, and pbqp). They all insert the instructions b and e (Code 4) when compiling our program

without other optimizations.
9
This means the vulnerability is inherent to register allocation, and

cannot avoided by just opting towards a particular register allocator.

6.3 Poison-Tracking Product
We develop a static analysis that reveals weaknesses like the one in Section 6.2. The analysis

operates on a product construction between source program and register-allocated program. To

motivate the construction, we inspect the simulation for register allocation under speculation-free

semantics, and explain what fails under speculative semantics. Under speculation-free semantics,

a simulation for register allocation matches a state 𝑠 of the source program 𝑃 to a state 𝑡 of the

target program [𝑃]ra whenever the instruction is matched, 𝑠 Φ 𝑡 , and the values of all registers

and memory locations in 𝑠 and 𝑡 are equal up to relocation Ψ. When 𝑃 is memory safe, one can

then prove that any instruction executed from 𝑡 can be replayed from 𝑠 . The simulation preserves

non-interference: Apart from the leakages inserted by shuffle instructions (which are constant

addresses), the leakage that arises from execution in 𝑡 is equal to the leakage from 𝑠 . The previous

section showed that it is not enough to just extend this approach to speculating states: Speculation

introduces unsafe memory operations that access the Ψ-mapped stack locations in [𝑃]ra. Such an

access cannot be simulated by the source program 𝑃 , as it has the accessed value in a register where

the memory operation cannot access it. As a result, if we executed 𝑃 and [𝑃]ra in parallel we will

eventually see speculating states S and T with different values in registers of S and their Ψ-mapped

location in T . Further execution propagates the differences to other locations.

The goal in fixing register allocation is to make sure that differences in value do not lead to leakage

of sensitive data. An immediate mitigation would be to insert an sfence instruction before every

9
Targeting x86-64. We used the opt passes mem2reg,simplify-cfg,module-inline before register allocation with llc.
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load and store operation. This would eliminate speculating unsafe memory accesses altogether.

However, this introduces many sfence instructions and reduces performance more than necessary.

Instead, we construct a product of 𝑃 and [𝑃]ra that tracks differences in values between S and T .
We call registers and memory locations that hold different values poisoned, because leaking them in

[𝑃]ra might be unsafe: If S and T execute an instruction that leaks the value of a poisoned register,

we cannot rely on 𝑃 being SNi to justify that the leakage from T is safe. Leakage of healthy (not

poisoned) registers, however, is safe for that reason. As a result, we only need to protect instructions

that leak a poisoned register’s value.

Poison types. Poison types represent the registers and memory locations where 𝑃 and [𝑃]ra can
have different values. Consider states 𝑠 ∈ State𝑃 and 𝑡 ∈ State[𝑃 ]ra . A poison type ps ∈ Ptype is
a function (Reg ∪ Mem \ Stk) → Poison. It assigns a poison value to each register and memory

location of 𝑠 . The poison values Poison = {p,wp, h} have the following meaning: Healthy registers

and memory locations (h) are equal between 𝑠 and 𝑡 up to relocation by Ψ. Poisoned registers

and memory locations (p) can differ between 𝑠 and 𝑡 up to relocation by Ψ. Finally, registers and
memory locations can be weakly poisoned (wp). This poison value is introduced because of slh𝑎. If
slh𝑎 occurs as a shuffle instruction, executing it speculatively sets 𝑎 to 0. But because it is a shuffle

instruction it does not occur in 𝑃 . That makes 𝑎’s value different between 𝑃 and [𝑃]ra. However,
every execution in [𝑃]ra that executes this shuffle instruction speculatively also sets 𝑎 to 0. This

makes it safe to leak in [𝑃]ra, even though the value differs between 𝑃 and [𝑃]ra. We thus type

registers and memory locations that hold a 0 due to an slh𝑎 instruction weakly poisoned (wp).
Formally, we express that states 𝑠 ∈ State𝑃 and 𝑡 ∈ State[𝑃 ]ra are equal up to a poison-type ps
and relocation Ψ with the notation 𝑠 Ψps 𝑡 . We then extend the notation to speculating states

S ∈ SState𝑃 and T ∈ SState[𝑃 ]ra of equal speculation depth |S | = |T |. For that, we have sequences of
poison types P ∈ Ptype∗, one poison type for each level of speculation |S | = |T | = |P|. To formalize

the notation S ΨP T , write ps[pv] for the set of all registers and memory locations typed pv by ps,
ps[pv] = {𝑎, (a, n) | ps𝑎 = pv, ps a n = pv}. Further, we write J𝑎K𝑡 = 𝜌𝑡 𝑎 and J(a, n)K𝑡 = 𝜇𝑡 a n. Let
𝑠 = (pc, 𝜌, 𝜇) ∈ State𝑃 and 𝑡 = (pc′, 𝜌 ′, 𝜇′) ∈ State[𝑃 ]ra range over states of 𝑃 and [𝑃]ra. We define:

𝑠 Ψps 𝑡

if and only if

∀𝑎 ∈ ps[h] . JΨ pc′ 𝑎K𝑡 = 𝜌 𝑎

∧ ∀𝑎 ∈ ps[wp] . JΨ pc′ 𝑎K𝑡 = 0

∧ ∀(a, n) ∈ ps[h] . 𝜇′ a n = 𝜇 a n

∧ ∀(a, n) ∈ ps[wp] . 𝜇′ a n = 0

S.𝑠 ΨP.ps T .𝑡

if and only if

S ΨP T

∧ 𝑠 Ψps 𝑡

The definition of 𝑠 Ψps 𝑡 meets the intuition: Healthy registers and memory locations need to

coincide between 𝑠 and 𝑡 and weakly poisoned locations must be 0 in 𝑡 . For poisoned locations,

there are no requirements. For speculating states, the definition is applied at each speculation level.

We write h, wp, and p for the poison types that assign the respective poison value everywhere.

Example 9. We observe the poisoned values in the attack from Section 6.2 in Code 4 when running

𝑃 and [𝑃]ra side by side. The register allocation (Φ,Ψ) is described in Example 8. The initial states

are 𝑠 = (1, 𝜌, 𝜇) and 𝑡 = (a, 𝜌, 𝜇), with 𝜌 b ∉ |buf| and 𝜌 secret = v ≠ 𝜌 bytes. We also assume that

already 𝜌 a = f (so that the updates in 1 and a have no effect). After executing the store instruction

at 3with the directive su buf 0, 𝑃 ’s state is𝑢 = (4, 𝜌, 𝜇 [(buf, 0) ↦→ v]). Similarly, after executing the

store instruction at d with the directive su stk 0, [𝑃]ra’s state is 𝑣 = (e, 𝜌, 𝜇 [(stk, 0) ↦→ v]). We see

a poisoned value for bytes: At e, it is still located in Ψ e bytes = (stk, 0) due to the spill at b. But
the values differ with 𝜌𝑣 bytes ≠ v = 𝜇′ stk 0. Further, 𝜇𝑢 buf 0 ≠ 𝜇𝑣 buf 0 holds a poisoned value.

With a poison type that is fully healthy except on bytes and (buf, 0), ps = h[bytes, (buf, 0) ↦→ p],
we have 𝑢 Ψps 𝑣 .
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Rules 6.1: Stack

poison-load-stkunsafe

𝑃 𝑠 = 𝑎 ≔ a[𝑏]›sc
ps𝑏 = h ps′ = ps[𝑎 ↦→ p]

𝑠 lu b l:ld n 𝑢 𝑡 lu stkm:ld n 𝑣

(𝑠, 𝑡, ps) lu b l:ld n ::lu stkm:ld n (𝑢, 𝑣, ps′)

poison-store-stkunsafe

𝑃 𝑠 = a[𝑏] ≔ 𝑐›sc Ψ 𝑣 𝑑 = (stk,m)
ps𝑏 = h ps′ = ps[𝑑, (a, l) ↦→ p]
𝑠 su a l:st n 𝑢 𝑡 su stkm:st n 𝑣

(𝑠, 𝑡, ps) su a l:st n ::su stkm:st n (𝑢, 𝑣, ps′)
Rules 6.2 Loads

𝑃 𝑠 = 𝑎 ≔ a[𝑏]›sc
poison-load-safe

ps𝑏 = wp 𝑠 •:ld k 𝑢 𝑡 •:ld 0 𝑣

(𝑠, 𝑡, ps) •:ld k ::•:ld 0 (𝑢, 𝑣, ps[𝑎 ↦→ p])

poison-load-unsafe

ps𝑏 = wp 𝑠 lu a l:ld k 𝑢 𝑡 •:ld 0 𝑣

(𝑠, 𝑡, ps) lu a l:ld k ::•:ld 0 (𝑢, 𝑣, ps[𝑎 ↦→ p])

healthy-load-safe

ps𝑏 = h 𝑠 •:ld n 𝑢 𝑡 •:ld n 𝑣

(𝑠, 𝑡, ps) •:ld n ::•:ld n (𝑢, 𝑣, ps[𝑎 ↦→ ps a n])

healthy-load-unsafe

ps𝑏 = h ps′ = ps[𝑎 ↦→ ps bm]
𝑠 lu bm:ld n 𝑢 𝑡 lu bm:ld n 𝑣 b ≠ stk

(𝑠, 𝑡, ps) lu bm:ld n ::lu bm:ld n (𝑢, 𝑣, ps′)
Rules 6.3 Stores

𝑃 𝑠 = a[𝑏] ≔ 𝑐›scpoison-store-safe

ps′ = ps[(a, k), (a, 0) ↦→ p]
ps𝑏 = wp 𝑠 •:st k 𝑢 𝑡 •:st 0 𝑣

(𝑠, 𝑡, ps) •:st k ::•:st 0 (𝑢, 𝑣, ps′)

poison-store-unsafe

ps𝑏 = wp 𝑠 su a l:st k 𝑢 𝑡 •:st 0 𝑣

(𝑠, 𝑡, ps) su a l:st k ::•:st 0 (𝑢, 𝑣, ps[(a, l), (a, 0) ↦→ ps 𝑐])

healthy-store-safe

ps′ = ps[(a, n) ↦→ ps 𝑐]
ps𝑏 = h 𝑠 •:st n 𝑢 𝑡 •:st n 𝑣

(𝑠, 𝑡, ps) •:st n ::•:st n (𝑢, 𝑣, ps′)

healthy-store-unsafe

ps𝑏 = h 𝑠 su bm:st n 𝑢 𝑡 su bm:st n 𝑣 b ≠ stk

(𝑠, 𝑡, ps) su bm:st n ::su bm:st n (𝑢, 𝑣, ps[(b,m) ↦→ ps 𝑐])
Rules 6.4: Shuffles

poison-fill

𝑃 𝑡 = 𝑎′ ≔ stk[l]›sc 𝑡 •:ld l 𝑣

(𝑠, 𝑡, ps) 𝜀 :𝜀 ::•:ld l (𝑠, 𝑣, ps)

poison-spill

𝑃 𝑡 = stk[l] ≔ 𝑏′›sc 𝑡 •:st l 𝑣

(𝑠, 𝑡, ps) 𝜀 :𝜀 ::•:st l (𝑠, 𝑣, ps)

poison-move

𝑃 𝑡 = 𝑎′ ≔ 𝑏′›sc 𝑡 •:• 𝑣

(𝑠, 𝑡, ps) 𝜀 :𝜀 ::•:• (𝑠, 𝑣, ps)

poison-shuffle-sfence

𝑃 𝑡 = sfence›sc 𝑡 •:• 𝑣

(𝑠, 𝑡, ps) 𝜀 :𝜀 ::•:• (𝑠, 𝑣, ps)

poison-shuffle-slh

𝑃 T = slh𝑎′›sc Ψ T 𝑎 = 𝑎′ T •:• V pv = |P| == 0 ? ps𝑎 : wp

(S, T , P.ps) 𝜀 :𝜀 ::•:• (S,V , P.ps[𝑎 ↦→ pv])
Rules 6.5: Speculation Sensitive

poison-step

(𝑠, 𝑡, ps) 𝛿 :𝜆 ::𝛾 :𝜅 (𝑢, 𝑣, ps′)
(S.𝑠, T .𝑡, P.ps) 𝛿 :𝜆 ::𝛾 :𝜅 (S.𝑢, T .𝑣, P.ps′)

poison-rollback

|S | = |T | = |P| ≥ 1

(S.𝑠, T .𝑡, P.ps) rb:rb ::rb:rb (S, T , P)

healthy-spec

𝑃 S = br𝑏›sct, scf ps𝑏 = h S sp:br b S.𝑢 T sp:br b T .𝑣

(S, T , P.ps) sp:br b ::sp:br b (S.𝑢, T .𝑣, P.ps.ps)

poison-sfence

𝑃 𝑠 = sfence›sc 𝑠 •:• 𝑢 𝑡 •:• 𝑣

(𝑠, 𝑡, ps) •:• ::•:• (𝑢, 𝑣, ps)

poison-slh

𝑃 S = slh𝑎›sc S •:• U T •:• V pv = |P| == 0 ? ps𝑎 : h

(S, T , P.ps) •:• ::•:• (U ,V , P.ps[𝑎 ↦→ pv])
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Poison product. The poison product 𝑃 :: [𝑃]ra tracks how poison types are updated when executing 𝑃

and [𝑃]ra side by side. We design the side by side execution so that transitions in [𝑃]ra are replayed
by 𝑃 . We later want to craft a simulation from the product, so every transition of [𝑃]ra must be

included in 𝑃 :: [𝑃]ra. However, when a transition of [𝑃]ra can be replayed by multiple transitions

in 𝑃 , which happens when 𝑃 performs an unsafe memory access, we choose a memory location for

the access so that the transition poisons as few registers and memory locations as possible. The

states of 𝑃 :: [𝑃]ra take the shape (S, T , P) with S ∈ SState𝑃 , T ∈ SState[𝑃 ]ra , P ∈ Ptype∗, and S ΨP T
(which already implies |S | = |T | = |P|). There are two types of states: Instruction-matched states

and shuffling states. Instruction-matched states satisfy S Φ T . Shuffling states have T at a shuffle

sequence after which the states would be instruction-matched again. That is, S = S′.𝑠 and T = T ′.𝑡 ,
so that [𝑃]ra 𝑡 = sh›sc with Φ 𝑠 = sc. Each type of state has transitions in 𝑃 :: [𝑃]ra:

(S, T , P) 𝛾 :𝜅 ::𝛿 :𝜆 (U ,V ,Q) (S, T , P) 𝜀 :𝜀 ::𝛿 :𝜆 (S,V ,Q)

The first type of transition is enabled only for instruction-matched S Φ T . It executes a transition
simultaneously in both programs via S 𝛾 :𝜅 U and T 𝛿 :𝜆 V . The second type is enabled only for

shuffling states. In that case, S stutters while T progresses through the shuffle sequence. In both

cases, the transition needs to update the poison values depending on the transition rules taken

in 𝑃 and [𝑃]ra. We present how 𝑃 :: [𝑃]ra updates poison values in Rules 6.1 to 6.5. We mirror the

approach in the semantics and provide the updates in two steps. In a first step, we define the updates

for instruction-matched, speculation-free states in Rules 6.1 to 6.3. They represent the transitions

for the speculation-free semantics (Rules 2.1). In the second step we lift the speculation-free updates

with Rules 6.5 to define the transitions of the product on the speculative semantics (Rules 2.2).

Rules 6.4 defines the transitions for shuffling states. The instruction-matched transitions for nop,
𝑎 ≔ 𝑏 ⊕ 𝑐 and br𝑏 can be found in the appendix. We explain the transitions in detail.

The transitions poison-load-stkunsafe and poison-store-stkunsafe are the source of poison

values. They represent the situation from above, where we argued that values between 𝑃 and [𝑃]ra
can differ: In poison-load-stkunsafe a target program’s speculating unsafe load (recognizable

from the directive lu stkm) loads from a spilled register’s stack location. The source program

cannot perform that load and thus has to perform any other unsafe load. This leads to different

loaded values and poisons the register loaded to. While we could choose the location of the unsafe

access in 𝑃 , the register is poisoned in either case, so we allow arbitrary unsafe loads in 𝑃 . Similarly,

in poison-store-stkunsafe a speculating unsafe store poisons the source program’s register 𝑑 by

overwriting it on the stack. Again, the source program cannot replay that store as 𝑑 is a register

and needs to store somewhere else. In this case, we always let the source program store to a instead,
because this reduces the number of poisoned memory locations for static analysis. The overwritten

stack-allocated register 𝑑 and the memory location in a are both poisoned. Notice how both rules

require the source program to access memory unsafely, as well. This is because the register holding

the offset address must be healthy, ps𝑏 = h, and thus has the same value in 𝑠 and 𝑡 . The address

must be healthy, because a poisonous address could be unsafe to leak. A weakly poisoned address,

on the other hand, would be 0 in [𝑃]ra which is always a safe access. This is because we chose

slh𝑎 to wipe a register to 0. Any other constant would work the same way, but the number of

rules in the product would increase.

Rules 6.2 and 6.3 for instruction-matched transitions just propagate already poisoned registers

and memory locations. For example, healthy-load-safe considers the case where the addressing

register is healthy. That means that both source and target program load from the same memory

location. We can recognize from the premise that the memory access is safe: Source and target

program execute the load with the directive •, so they execute with load. The rule then propagates

the poison value from the memory location loaded from to the register loaded to. As before,
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the product transition can only be taken when the leaked content is not poisoned as that could

represent an unsafe leakage. The case of a weakly poisoned address is separately handled by

poison-load-safe and poison-load-unsafe. Rules 6.3 propagate poison values for stores.

Rules 6.5 provides the poison updates for instruction-matched states that execute speculation

sensitive instructions. Rule poison-step lifts the speculation-free transitions to the speculative

setting. healthy-spec forbids weakly poisoned branching conditions even though they are safe to

leak. This is to avoid that 𝑃 and [𝑃]ra arrive at different program points (up to Φ).10 poison-slh
creates healthy values when the product is speculating, because source and target program both

wipe the register to 0. If not speculating, the poison values are untouched.

Rules 6.4 provides the second type of transitions, for shuffling states, in 𝑃 :: [𝑃]ra. The speculation
insensitive shuffle instructions are again brought to speculating states with poison-step. The

insensitive shuffle instructions only move values and don’t modify them. There is no need to update

the poison type because the relocation is already included in Ψ with shuffle conformity. Thus, the

poison type is untouched. Only poison-shuffle-slh can be a new source of poisoned values. As

discussed earlier, when speculatively executed, it wipes the register’s value to 0, which makes it

weakly poisoned. On speculation-free states, sfence and slh𝑎′ do not update the poison type.

The transitions of 𝑃 :: [𝑃]ra are well-defined in the sense that executing a transition leads to a

state that again satisfies the constraints of being a state (Lemma 4). Also, the speculation-free states

never become poisoned, because poison-load-stkunsafe and poison-store-stkunsafe cannot

happen: 𝑃 is memory safe under speculation-free semantics. Further, the only other rule to introduce

poison values is poison-shuffle-slh, but it introduces no poison value in speculation-free states.

Lemma 4. Given (S, T , P) and a transition (S, T , P) 𝛾 :𝜅 ::𝛿 :𝜆 (U ,V ,Q), then U ΨQ V .

Lemma 5. Speculation-free states are never poisoned. I.e. (𝑠, 𝑡, h) 𝑒 :𝑘 ::𝑑 :𝑙 ∗ (𝑢, 𝑣, ps) implies ps = h.

Example 10. Consider the execution of 𝑃 :: [𝑃]ra in Figure 3. It depicts the side by side execution

from Example 9 in 𝑃 :: [𝑃]ra. Each state of 𝑃 :: [𝑃]ra is depicted as a small table listing the program

counters of 𝑃 and [𝑃]ra, the values of the registers, and the values of relevant memory locations

(we use t, f for Boolean typed values). The right column contains the poison type associated with

the pair of states. The first transition simultaneously executes the instruction-matched assignment

at 1 and a. The second transition executes the shuffle instruction that spills bytes to stk[0] at b,
while 𝑃 waits. The third transition speculates. Notice that healthy-spec only admits this transition

because a is h. The next transition is the unsafe store to stk in [𝑃]ra, overwriting the spilled bytes.
Notice that poison-store-stkunsafe has changed the poison value for bytes to p, because the
memory location written to was Ψ e bytes = (stk, 0). The rule also poisons the memory location

where 𝑃 writes to. The last transition is the shuffle instruction that relocates the poisoned bytes
to a. The product is now stuck: healthy-spec is disabled because the poison value for bytes is p
and thus not safe to leak in [𝑃]ra. Indeed, Ψ f bytes = a holds the secret value 42.

6.4 Static Poison Analysis of 𝑃 :: [𝑃]ra

The poison product findsweaknesses:Whenever a poisoned register’s valuewould be leaked in [𝑃]ra,
the product cannot execute the transition. To find the program points where a poisoned register can

be leaked, we design a static analysis that over-approximates the poison values any execution could

produce. The analysis constructs, for each program point pair (pc, pc′), an approximate poison

type ps. This poison type is approximate in that a statically h-typed register is always healthy in

any execution that reaches (pc, pc′) in a speculating state. Similarly, if it is statically typed wp it is

10
Branching on weakly poisoned registers could be supported but further complicates the product definition.
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Fig. 3. An execution of 𝑃 :: [𝑃]ra on Code 4. Updated values are highlighted. Dead registers are gray.

always weakly poisoned in a speculating state. However, if it is statically typed p it might also be

healthy or weakly poisoned. Formally, the analysis constructs a function X : PC𝑃 :: [𝑃 ]ra → Ptype,
where PC𝑃 :: [𝑃 ]ra are the program points of 𝑃 :: [𝑃]ra,

PC𝑃 :: [𝑃 ]ra ≜ {(pc, pc′) | ∃(S.𝑠, T .𝑡, P.ps). pc ≡ 𝑠 ∧ pc′ ≡ 𝑡}
= {(pc, pc′), (pc, r′) | Φ pc = pc′ ∧ [𝑃]ra r′ = sh›pc′ } .

The pairs (pc, pc′) are instruction-matched program counters and (pc, r′) are from shuffling states.

We design our analysis as a forward flow analysis (Equation (fwd)). For that, we need to define a

flow lattice 𝐿, transfer functions, and the initial flow value X0. The flow analysis then yields X as a

solution. The lattice is constructed on Ptype. We create an ordering h < p and wp < p on Poison.
In order to arrive at a lattice, we further extend it by an artificial least element ⊥ ∈ Poison.11 We

then lift the ordering point-wise to poison types for the flow lattice 𝐿 = (Ptype, ≤). The ordering
is chosen with the intention that when ps ≤ ps′, then 𝑠 Ψps 𝑡 implies 𝑠 Ψps′ 𝑡 (which would not

be the case if we had set h < wp). The initial value is set to healthy, X0 = h, because the initial
states of 𝑃 and [𝑃]ra are fully equal up to Ψ. The transfer functions 𝐹 (pc,pc′ ) : Ptype → Ptype need
to approximate the poison types in 𝑃 :: [𝑃]ra. Conceptually, they update the current poison type by

simultaneously executing all updates that 𝑃 :: [𝑃]ra could do. For instruction-matched Φ pc = pc′

that means to look at the instruction 𝑖 = 𝑃 pc which is the same as [𝑃]ra pc′ up to Ψ. Then, we
poison all registers and memory locations that a rule for 𝑖 from Rules 6.1 to 6.3 and 6.5 could poison.

This means the transfer function is solely dependent on the instruction 𝑖 = 𝑃 pc, and we define it via
𝐹 (pc,pc′ ) = 𝐹𝑖 below. For a shuffling product state, 𝑃 :: [𝑃]ra offers for each instruction 𝑖′ = [𝑃]ra r′
only one update which we find in Rules 6.4. We again define transfer solely dependent on 𝑖′ via
𝐹 (pc,r′ ) = 𝐺𝑖′ . For a shuffling 𝑖′ = slh𝑎′ we assume that the source register for 𝑎′ is 𝑎, i.e. Ψ r′ 𝑎 = 𝑎′.
We only present the interesting cases of 𝐹𝑖 and𝐺𝑖′ . The initial poison type for (init, init′) is healthy.

𝐹𝑎 ≔ a[𝑏 ]›sc ps = ps[𝑎 ↦→ p]
𝐹slh𝑎›sc ps = ps[𝑎 ↦→ h]
𝐺slh𝑎′›sc ps = ps[𝑎 ↦→ wp]
𝐺sfence›sc ps = h

𝐹𝑎 ≔ 𝑏⊕𝑐›sc ps =

{
ps[𝑎 ↦→ h] ps𝑏 = ps 𝑐 = h
ps[𝑎 ↦→ p] otherwise

𝐹a[𝑏 ] ≔ 𝑐›sc ps = ps[Mem ↦→⊔ ps 𝑐] [Reg, a ↦→ p]

All transfer functions are monotonic. All but one transfer function are easily defined in order to

approximate the rules of 𝑃 :: [𝑃]ra. The exception is for a[𝑏] ≔ 𝑐 instructions which we explain.

The first substitution ps[Mem ↦→⊔ ps 𝑐] sets all memory locations (b, n) to ps (b, n) ⊔ ps 𝑐 . This
approximates healthy-load-safe and healthy-load-unsafe, because both 𝑃 and [𝑃]ra store to
11
This is a standard construction. In the remainder, we assume that transfer functions preserve ⊥.
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the same location which will have poison value ps 𝑐 . All other locations maintain their poison value.

To approximate this behavior statically, we take the join on the two poison values. The second

substitution sets all of a and all registers Reg to p.12 This approximates poison-store-stkunsafe:

Reg needs to be poisoned because a store to the stack overwrites the contents of a register in the

source program. At the same time, the rule overwrites a in the source program 𝑃 , which leads to

a being poisoned as well. Additionally, poison-store-safe and poison-store-unsafe write to a
only, meaning the poisoning of a already approximates them as well.

In order to formally express how a solution X approximates the poison values of all reachable

states in 𝑃 :: [𝑃]ra, we introduce shorthand notations for sequences of poison types fully consisting

of poison types from X. Fix a solution X to the flow equations. We define:

X𝑠,𝑡 = h XS.𝑠,T.𝑡 = XS,T .X (𝑠, 𝑡)
S ΨX T ⇔ S ΨXS,T T S.𝑠 Ψps

X T .𝑡 ⇔ S.𝑠 ΨXS,T .ps T .𝑡 (S.𝑠, T .𝑡, ps) = (S.𝑠, T .𝑡,XS,T .ps)
The notation XS,T , where S, T are speculating states, stands for a sequence of poison types of length

|XS,T | = |S | = |T |. Intuitively,XS,T consists of the poison types ofX, applied to the program counters

of S and T at every level. The only exception is the lowest level in the speculating states. They are

always set to h, because we know from Lemma 5 that those states are reachable speculation-free

and can never have poisoned registers or memory locations. The notation S ΨX T , S Ψ
ps
X T , and

(S.𝑠, T .𝑡, ps) are shorthand notations to avoid a lot of repeating XS,T .

Lemma 6. Whenever (S, T ,XS,T ) 𝛾 :𝜅 ::𝛿 :𝜆 ∗ (U ,V ,Q) then Q ≤ XU ,V .

6.5 Fixing Register Allocation
We can use our static analysis solutionX to identify whether [𝑃]ra has weaknesses: IfX guarantees

that leakages are never poisonous, then [𝑃]ra has no register allocation induced weaknesses.

Definition 8. A register allocation (Φ,Ψ) between 𝑃 and [𝑃]ra is poison-typable, if there is a
solution X to (fwd) which for every (pc, pc′) with Φ pc = pc′ satisfies the additional constraints

ps𝑏 = wp ∨ ps𝑏 = h if 𝑃 pc = 𝑎 ≔ a[𝑏]›sc ∨ 𝑃 pc = a[𝑏] ≔ 𝑐›sc ,

ps𝑏 = h if 𝑃 pc = br𝑏›sct, scf .

Our fix is applicable to any register allocation (Φ,Ψ) between 𝑃 and [𝑃]ra: We check if (Φ,Ψ) is
poison-typable. For that, we solve the flow analysis (e.g. [Kildall 1973]) to obtain a static poison

assignment X and check the additional constraints. If it is not poison-typable, then an additional

constraint is violated for some program point (pc, pc′) and register 𝑏′ of 𝑃 :: [𝑃]ra. We insert an

sfence or slh𝑏′ instruction into [𝑃]ra at the end of the shuffle sequence right before pc′ and obtain
a new register allocation where that additional constraint is now satisfied. We then repeat the

process until we obtain a poison-typable register allocation.

6.6 Poison-typable Register Allocation is SNiP
We now prove that making register allocation poison-typable already makes it SNiP. With our

proof method from Theorem 2, this reduces to crafting a snippy simulation. Again, the crafted

simulation is parametric, so that it works for all poison-typable register allocations.

Theorem 11. If (Φ,Ψ) is a poison-typeable register allocation between 𝑃 and [𝑃]ra, then there
exists a snippy simulation (≺,◁) between [𝑃]ra and 𝑃 .
For the remainder of the section, fix a poison-typable register allocation (Ψ,Φ) between 𝑃 and

[𝑃]ra, and the static poison assignmentX. Further, let init be the entry point for 𝑃 and init′ for [𝑃]ra.
12
We could be more precise and poison only those registers spilled at the current program point.
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𝛾 :𝜅 𝛿 :𝜆 •:𝜆1 •:𝜆𝑚

rb:rb rb:rb

shuffle only

rb:rb

Fig. 4. The shape of Φ-intervals. Teal and red paths form separate intervals.

Defining (≺,◁). We define ≺ ⊆ SState[𝑃 ]ra × SState𝑃 similar to the simulation for register allocation

without speculative semantics: Source state S and target state T are instruction-matched and

coincide in values up to relocation by Ψ. The difference is that the states do not need to coincide

on registers and memory locations poisoned by X:

T ≺ S if and only if S Φ T ∧ S ΨX T .

For the directive transformation ⊳T≺S , we rely on 𝑃 :: [𝑃]ra’s transitions. We say that a transition

sequence (S, T , ps) 𝑒 :𝑘 ::𝑑 :𝑙 ∗ (U ,V , ps′) is a Φ-interval if S Φ T , U Φ V , and no intermediary

state pairs are instruction matched. The intent is that Φ-intervals are precisely the simulation

intervals once we have proven that our defined relation is a simulation. Figure 4 depicts the shape

of Φ-intervals: The product first executes the instruction-matched instruction on both S and T .
Then, the target program can perform any number of shuffle steps, until either the shuffle sequence

is fully executed (the pair of red paths), or a rollback happened before that (any pair of teal paths).

In that case, 𝑃 :: [𝑃]ra rolls back on U as well. We use the Φ-intervals as directive transformations,

⊳T≺S ≜ {(𝑒, 𝑑) | (S, T , ps) 𝑒 :𝑘 ::𝑑 :𝑙 ∗ (U ,V , ps′) is a Φ-interval} .

Lemma 7. (≺,◁) is a snippy simulation between [𝑃]ra and 𝑃 .

7 Related Work
We already discussed the closely related work in the context of compiler correctness. Here, we give

a broader picture and elaborate on methods for proving non-interference for single programs. Note

the difference: when reasoning about compiler passes, we reason over all programs. For a broader

overview, we defer the reader to a recent survey [Cauligi, Disselkoen, Moghimi, et al. 2022].

Speculation Sources. Since its discovery in 2018, Spectre attacks have been rediscovered in multiple

variants. The main difference between the variants lies in the hardware feature that is trained in

order to trigger a misspeculation. We call the respective feature the source of speculation. The

first version of the attack trains the Prediction History Table (PHT) of the processor, in order to

inflict a mispredicted branching speculation [Kocher et al. 2019]. Other variants train the Branch

Target Buffer (BTB) to mispredict indirect branching instructions [Kocher et al. 2019], the Return

Stack Buffer (RSB) to mispredict return points [Koruyeh et al. 2018], both of which highjack the

speculative control flow to execute leaking gadgets speculatively. They can be mitigated in software

with a retpoline gadget [Turner 2018]. The Speculative Store Bypass (SSB) mechanism, also called

Store-To-Load Forwarding (STL), reads from memory even though pending stores have unresolved

addresses [Horn 2018], and the Predictive Store Forwarding (PSF) mechanism forwards pending

stores to loads with unresolved address [Guanciale et al. 2020]. These mechanisms speculatively

load values that either should have been overwritten in the meantime, or should never arrive in

memory at the loaded address, creating further potential for unwanted information-flow. Memory

speculation sources can be disabled in hardware with mediocre performance penalty. The Meltdown

attack introduces speculation through an out-of-order read from elevated-permission memory

regions, racing against the MMU to detect the violation before the read memory can be leaked [Lipp
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Table 3. Tools that check a program against speculative non-interference: Pitchfork [Cauligi, Disselkoen,
Gleissenthall, et al. 2020], Spectector [Guarnieri, Köpf, Morales, et al. 2020], RelSE [Daniel et al. 2021],
Blade [Vassena et al. 2021], Jasmin SCT [Barthe, Cauligi, et al. 2021], Typing V1 [Shivakumar et al. 2023].

Pitchfork Spectector RelSE Blade Jasmin SCT Typing V1
Source PHT, SSB PHT PHT, SSB PHT PHT PHT
Property TS NI NI TS TS TS
Method EX SE SE SA SA SA
Speculation SW SW SW / SB US US US
Directives Y Y (Oracle) N Y Y Y
Memory Safety U U U U SS S
Bug / Proof Bug Bug Bug Proof Proof Proof

et al. 2018]. While the speculation sources are varying, all attack variants leak the secrets through

the side-channels covered by the constant-time leakage model [Guarnieri, Köpf, Reineke, et al.

2021]. In this paper, we consider only the PHT speculation source. We believe that our notion of

simulation also holds for other speculation sources, but we are less sure about what compiler passes

satisfy SNiP when they are considered.

Properties. The constant time programming guideline requires no influence of sensitive data towards

the leakage observable by the attacker. Formally, non-interference [Goguen and Meseguer 1982]

(Definition 1) expresses this property. Non-interference is a hyper-property [Clarkson and Schneider

2010]: It requires to reason about two executions of the program. Hyper-properties tend to be

harder to verify than single trace properties due to synchronization issues with the traces compared.

Non-interference for side-channel leakage evades these issues: The constant time leakage model

exposes the program counter to the attacker. Thus, when two traces from attacker-indistinguishable

initial states do not coincide in their control flow, the program can immediately be rejected as

insecure. Such a high degree of synchronization allows for a sound approximation we call taint

safety [A. C. Myers 1999; Sabelfeld and A. Myers 2003].

Tools. Existing tools check single implementations for non-interference. Our work on compiler

transformations complements this line of work. It is now possible to check source programs for non-

interference, and rely on the compiler that guarantees to preserve non-interference to the executed

program for any source program. The tools deal with two main challenges: Non-determinism from

speculation and the two executions required for non-interference. Table 3 presents a list of tools

and classifies their approaches. The Source lists the considered speculation sources. Property is

the formal property checked: NI is non-interference under speculative semantics. TS is taint safety.

Method is either SA for static analysis such as flow- or type-systems, SE for symbolic execution, or

EX for state space exploration. Speculation lists how the tool models and copes with speculation

based non-determinism. SW means that the semantics have a bounded speculation window, i.e. a

bound to the number of speculatively executed instructions. SB means that the semantics have

a bounded store buffer that limits the number of speculatively executed store instructions. US
means unbounded speculation, i.e. the semantics speculate arbitrarily long. Mem Safety describes

the memory model and memory requirements on the source program. U stands for unstructured

memory, S for structured memory and memory safety under speculation-free semantics, and SS is

memory safety even under speculative semantics.

Jasmin SCT (Table 3) comes along with the Jasmin compiler (Table 1), that is proven to preserveNi
under speculation-free semantics. In [Barthe, Cauligi, et al. 2021], the authors suggest an additional
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requirement to cope with speculative semantics: Source programs need to be memory safe even

when executed under speculative semantics (SS). However, there is no proof that the compiler

preserves non-interference under this requirement. SS is also a performance breaking requirement:

They report that SS-implementations are ~20% slower than the insecure reference implementations;

in contrast to ~1% overhead reported for recently protected implementations without SS.

Similarities and differences to a simultaneously developed proof technique. Another proof method for

preserving speculative side-channel security through compilers has been developed independently

of our work [Arranz Olmos et al. 2025].
13
There are subtle differences in the definition of semantics,

security property, and simulation: First, their semantics comes without rollbacks. The idea is that a

difference in leakage can always be obtained by an execution that contains no rollback. This result

has been obtained previously [Barthe, Cauligi, et al. 2021]. Second, their security property, SCT, is
the same as SNi from this work. However, the authors employ a slightly modified semantics which

allows them to phrase the property differently. Finally, our simulation constraint is a constant-time

cube (Figure 2). The constraint formulated by Arranz Olmos et al. [2025] instead requires the

existence of two functions: One back-translates directives similar to how our simulation finds a

sequence of source directives to replay the target directives. The other forward-translates leakage

from source leakage to target leakage. The existence of both functions already guarantees that our

constant-time cube is satisfied. The bigger difference is in the application of our proof methods. Our

work spots a weakness in register allocation, and we develop a static analysis to protect against

security-threatening spills. Arranz Olmos et al. [2025] target the Jasmin compiler with their work.

Jasmin’s source language already requires the programmer to tag variables as register or stack

variable. Therefore, the Jasmin compiler performs no spilling, avoiding the weakness by demanding

the programmer to appropriately choose register-allocated variables. Their work instead focuses

on proving nine other passes secure by extending preservation proofs from leakage semantics to

speculative semantics.

8 Conclusion
We have developed a method for proving that compiler transformations preserve non-interference

from source to target programs under speculative semantics. When experimenting with our method,

we found that it worked well on simple transformations like dead code elimination, but we had

trouble applying it to register allocation. As it turned out, the fault was not on our side but register

allocation is actually insecure. Our method led us to discover a new vulnerability introduced

by register allocation. We have confirmed the existence of this vulnerability in the mainstream

compiler LLVM on code from libsodium, a modern cryptographic library. Interestingly, our proof

method also guided us towards a fix: We have presented a new static analysis to identify weaknesses

introduced by register allocation, and an automated procedure to fix them. With these additions,

we have been able to prove that register allocation preserves non-interference.

As future work, we would like to integrate our proof method with certified compilers, investigate

transformations that we left out so far, and consider further sources of speculation in the semantics.
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A Missing proofs from Section 2
Proof of Lemma 1. Let S1 = S′

1
.(pc, 𝜌1, 𝜇1), S2 = S′

2
.(pc, 𝜌2, 𝜇2), We do the proof by induction on

the first transition S1 𝛿 :𝜆 T1 and S2 𝛿 :𝜆 T1. We do case distinction.

▶ 𝛿 = rb = 𝜆 , then |S1 | = |S2 | > 1. Further, T1 = S′
1
and T2 = S′

2
. Thus, T1 ≡ T2 follows immediately

from S1 ≡ S2
▶ 𝛿 = sp and 𝜆 = br b Then, S1 sp:br b S1.(sc¬b, 𝜌1, 𝜇1) and S2 sp:br b S2.(sc¬b, 𝜌2, 𝜇2). Clearly,

T2 = S2.(sc¬b, 𝜌2, 𝜇2) ≡ S1.(sc¬b, 𝜌1, 𝜇1). The case of 𝛿 = br and 𝜆 = br b is similar.

▶ All other cases Because 𝑃 pc has only a single successor sc, and only modifies the executing

state, it is clear from S′
1
≡ S′

2
and both executing states being in sc, that T1 ≡ T2. □

B Missing Proofs from Section 4
Lemma 3

Proof. The ⊇ direction for terminating behavior is immediate:
:

t
⊆ : ∗

. For diverging behavior,

consider any (𝑑 :𝑙) with T 𝑑 :𝑙
t
∞. By definition, there is T 𝑑 :𝑙

t
V 𝑒 :𝑘

t
∞. Notably,

𝑑 :𝑙
t
cannot do

stuttering transitions, thus there are transitions T 𝛿0 :𝜆0 . . . 𝛿𝑛 :𝜆𝑛 V and 𝜆0. . . . .𝜆𝑛 = 𝑙 , 𝛿0. . . . .𝛿𝑛 = 𝑑 .

Further, if there is T 𝑑 :𝑙
t
V then also (S, T ) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U ,V ). Thus, S 𝑒 :𝑘

s
U and V ≺ U . By

coinduction, V 𝑒 :𝑘 ∞, which completes this direction.

For ⊆, be given the proof that justifies T ≺ S. Show that when T 𝑑 :𝑙 ∞ (T 𝑑 :𝑙 ∗ X , X final), then

(either T = X are final, or) there is T 𝑓 :𝑚
t
V ≺ U , with V 𝑒 :𝑘

t
∞ (V 𝑒 :𝑘 ∗

t
X ) so that 𝑙 =𝑚.𝑘 and

𝑑 = 𝑓 .𝑒 (𝑙 =𝑚.𝑘 and 𝑑 = 𝑓 .𝑒).

To do so, we first show the following: For every T ≺ S with T 𝑑 :𝑙 ∗ X (note that X need not be

final), either T 𝑓 :𝑚 ∗ V 𝑒 :𝑘 ∗ X so that T 𝑓 :𝑚
t
V or there is a proof node ⟨ ≺≺ , ⊳T≺S ⊢ X ≺t S : 𝑑⟩.

We do so by induction on the structure of T 𝑑 :𝑙 ∗ X . For the base case (T 𝜀 :𝜀 ∗ T ), we already know

that the proof has a node ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝑑⟩ for justification of T ≺ S. For the inductive case,
consider T 𝑑 :𝑙 ∗ X ′ 𝛿 :𝜆 X . Then, by induction, either T 𝑓 :𝑚

t
V 𝑒 :𝑘 ∗ X ′

or there is a proof node

⟨ ≺≺ , ⊳T≺S ⊢ X ′ ≺t S : 𝑑⟩. In the first case, we are done. In the second case, we do case distinction

by the rule that derives ⟨ ≺≺ , ⊳T≺S ⊢ X ′ ≺t S : 𝑑⟩. In case of rule direct-tf, we get T 𝑑 :𝑙
t
X ′

(because the proof also derives a source sequence). Otherwise, the case is rule tgt. In that case,

⟨ ≺≺ , ⊳T≺S ⊢ X ≺t S : 𝑑.𝛿⟩ 𝛿
=⇒ ⟨ ≺≺ , ⊳T≺S ⊢ X ′ ≺t S : 𝑑⟩ as desired.

Then, we utilize this to first prove the slightly different statement: For every T ≺ S with T 𝑑 :𝑙 ∞
(T 𝑑 :𝑙 ∗ X , X final), (either T = X is final, or) there is T 𝑓 :𝑚

t
V ≺ U , with V 𝑒 :𝑘 ∞ (V 𝑒 :𝑘 ∗ X ) so

that 𝑙 = 𝑚.𝑘 and 𝑑 = 𝑓 .𝑒 (𝑙 = 𝑚.𝑘 and 𝑑 = 𝑓 .𝑒). Towards contradiction, assume it is not the case.

Then, the previous fact yields us an infinite chain of nodes in the proof tree, a contradiction to the

well-foundedness of the proof: First, due to T 𝜀 :𝜀 ∗ T , ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝜀⟩ is part of the proof.
And when by induction the transitions T 𝑓 :𝑚 ∗ V ′ 𝛿 :𝜆 V 𝑒 :𝑘 ∞, 𝑓 = 𝛿0. . . . .𝛿𝑛 imply that the proof

contains ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝜀⟩
𝛿0⇐== . . .

𝛿𝑛⇐== ⟨ ≺≺ , ⊳T≺S ⊢ V ′ ≺t S : 𝑓 ⟩, then it cannot be proven by

rule direct-tf as that would create T 𝑓 :𝑚
t
V . Thus, it must be proven via rule tgt which further

requires ⟨ ≺≺ , ⊳T≺S ⊢ V ′ ≺t S : 𝑓 ⟩ 𝛿⇐= ⟨ ≺ , ⊳T≺S ⊢ V ≺t S : 𝑓 .𝛿⟩.
Finally, we derive the result by coinduction, which yields V 𝑒 :𝑘

t
∞. With T 𝑓 :𝑚

t
V , we compose

T 𝑓 .𝑒 :𝑚.𝑘
t
∞. □
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C Missing proofs from section 5 and Transfer for Liveness Analysis
We define the transfer functions for Liveness analysis on instructions. Write 𝐹𝑖 for 𝐹pc with 𝑃 pc = 𝑖 .

𝐹𝑎 ≔ a[𝑥 ]›sc 𝑙 =


𝑙 𝑎 ∉ 𝑙

(𝑙 \ {𝑎}) ∪ {(a, n)} 𝑥 = n
(𝑙 \ {𝑎}) ∪Mem) 𝑥 = 𝑏

𝐹a[𝑎] ≔ 𝑥 ›sc 𝑙 =


𝑙 𝑥 = n ∈ |a|, (a, n) ∉ 𝑙

(𝑙 \ {(a, n)}) 𝑥 = n ∈ |a|, (a, n) ∈ lm

𝑙 ∪ {𝑏} 𝑥 = 𝑏

𝐹nop›sc 𝑙 = 𝑙

𝐹𝑎 ≔ 𝑏⊕𝑐›sc 𝑙 =

{
(𝑙 \ {𝑎}) ∪ {𝑏, 𝑐} 𝑎 ∈ 𝑙

𝑙 𝑎 ∉ lr

𝐹br𝑎›sct, scf
𝑙 = 𝑙 ∪ {𝑎}

𝐹ret 𝑙 = X0 = Mem

Remaining cases for Theorem 7
▶ ⟨𝑎 ≔ 𝑏 ⊕ 𝑐›sc, nop›sc⟩ For the first part, we have 𝑡1

•:• 𝑣1 and need to show 𝑠1
•:• 𝑢1 and

𝑣1 ≺ 𝑢1. The former is immediate from semantics. For the latter, we know that 𝑎 ∉ X pc because
the instruction was replaced by nop. The transfer of X pc along 𝑖 is then 𝐹pc (X pc) = X pc
because an assignment to a non-live register does not make any registers live. Together with

(bwd), we get 𝐹pc (X pc) = X pc ⊇ 𝐹sc (X sc). Because registers and memory of 𝑡1 and 𝑣1 are

equal and 𝑠1 and 𝑢1 only differ on 𝑎, 𝑡1 ≺ 𝑠1 implies 𝑣1 ≺ 𝑢1 because 𝑎 ∉ X pc ⊇ 𝐹sc (X sc). For
the second part, further assume 𝑠2

•:• 𝑢2. We need to show that 𝑡2
•:• 𝑣2 and 𝑣2 ≺ 𝑢2. The

former is again immediate from semantics. For the latter, we have the same arguments as for the

first part: Memory and register contents of 𝑡2 and 𝑣2 are equal and 𝑠2 and 𝑢2 only differ in 𝑎.

▶ a[𝑏] ≔ 𝑐›sc, a[𝑏] ≔ 𝑐›sc There are two subcases - either safe or unsafe store.

For safe store we get 𝑡1
•:st n 𝑣1 and since 𝑏 ∈ 𝐹pc (X pc), 𝜌𝑡1 𝑏 = 𝜌𝑠1 𝑏, so 𝑠1

•:st n 𝑢1. Also,

𝐹pc (X pc) ∪ {(a, n)} ≥ X pc ≥ 𝐹sc (X sc) and 𝜇𝑡1 = 𝜇𝑣1 and 𝜇𝑠1 = 𝜇𝑢1
on all slots except (a, n).

But due to 𝑐 ∈ 𝐹pc (X pc), we also have 𝜇𝑡1 a n = 𝜇𝑣1 a n, so 𝑣1 ≺ 𝑢1. Further 𝑡2
•:st n 𝑣2 and

• ⊳𝑡2≺𝑠2 • are a given.
For unsafe store we have an analogue proof, except both directives are su bm.

▶ a[𝑏] ≔ 𝑐›sc, nop›sc Analogue to the previous case, except 𝜅 = • and the argument for 𝜇𝑡1 a n =

𝜇𝑣1 a n does not hold anymore. However, since (a, n) ∉ X pc ≥ 𝐹sc (X sc), we don’t need it for

𝑣1 ≺ 𝑢1.

▶ 𝑎 ≔ a[𝑏]›sc, 𝑎 ≔ a[𝑏]›sc and 𝑎 ≔ a[𝑏]›sc, nop›sc The argumentation is analogue to the previous

two cases.

▶ nop›sc, nop›sc We get 𝑡1
•:• 𝑣1 and 𝑠1

•:• 𝑢1. Also, 𝐹pc (X pc) = X pc ≥ 𝐹sc (X sc) and 𝜌𝑡1 = 𝜌𝑣1
and 𝜌𝑠1 = 𝜌𝑢1

, so 𝑣1 ≺ 𝑢1. Further 𝑡2
•:• 𝑣2 and • ⊳𝑡2≺𝑠2 • are a given.

▶ 𝑎 ≔ 𝑏 ⊕ 𝑐›sc, 𝑎 ≔ 𝑏 ⊕ 𝑐›sc We get 𝑡1
•:• 𝑣1 and 𝑠1

•:• 𝑢1. Also, 𝐹pc (X pc) ∪ {𝑎} ≥ X pc ≥
𝐹sc (X sc) and 𝜌𝑡1 = 𝜌𝑣1 and 𝜌𝑠1 = 𝜌𝑢1

on all registers except 𝑎. But due to 𝑏, 𝑐 ∈ 𝐹pc (X pc), we
also have 𝜌𝑡1 𝑎 = 𝜌𝑣1 𝑎, so 𝑣1 ≺ 𝑢1. Further 𝑡2

•:• 𝑣2 and • ⊳𝑡2≺𝑠2 • are a given.
▶ ret No transition can be made by 𝑡1, the case does not exist.

▶ br𝑎›sct, scf , br𝑎›sct, scf We get T1.𝑡1 sp¬b:br¬b T1.𝑣1,b.𝑣1,¬b = V1 where b = (𝜌𝑡1 𝑎 == 0) and by

𝑎 ∈ 𝐹pc (X pc), 𝜌𝑡1 𝑎 = 𝜌𝑠1 𝑎 so S1.𝑠1 sp¬b:br b S1.𝑢1,b.𝑢1,¬b = U1. Further, 𝐹pc (X pc) ≥ X pc ≥
𝐹scb (X scb). Thus, 𝑣1,b ≺ 𝑢1,b and 𝑣1,¬b ≺ 𝑢1,¬b. Further, if S2 sp¬b:br¬b U2, by same arguments,

we have T2 sp¬b:br¬b V2 and sp¬b ⊳𝑡2≺𝑠2 sp¬b.
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D Additional Material and Missing proofs for Section 6
Rules D.1: Shuffle Semantics

move

𝑃 pc = 𝑎 ≔ 𝑏›sc

(pc, 𝜌, 𝜇) •:• (sc, 𝜌 [𝑎 ↦→ 𝜌 𝑏], 𝜇)

fill

𝑃 pc = 𝑎 ≔ stk[l]›sc
(pc, 𝜌, 𝜇) •:ld l (sc, 𝜌 [𝑎 ↦→ 𝜇 stk l], 𝜇)

spill

𝑃 pc = stk[l] ≔ 𝑎›sc

(pc, 𝜌, 𝜇) •:st l (sc, 𝜌, 𝜇 [(stk, l) ↦→ 𝜌 𝑎])

Missing rules for 𝑃 :: [𝑃]ra

Rules D.2: Basic

poison-nop

𝑃 𝑠 = nop›sc 𝑠 •:• 𝑢 𝑡 •:• 𝑣

(𝑠, 𝑡, ps) •:• ::•:• (𝑢, 𝑣, ps)

healthy-branch

𝑃 𝑠 = br𝑏›sct, scf ps𝑏 = h 𝑠 br:br b 𝑢 𝑡 br:br b 𝑣

(𝑠, 𝑡, ps) br:br b ::br:br b (𝑢, 𝑣, ps)

poison-asgn

𝑃 𝑠 = 𝑎 ≔ 𝑏 ⊕ 𝑐›sc 𝑠 •:• 𝑢 𝑡 •:• 𝑣 pv = (ps𝑏 = ps 𝑐 = h) ? h : p

(𝑠, 𝑡, ps) •:• ::•:• (𝑢, 𝑣, ps[𝑎 ↦→ pv])

Rule poison-asgn propagates poison values for assignments. Notice that weakly poisoned values

become poisoned because the operator’s result value is most likely a non-zero value. Thus, only if

both arguments are healthy, we propagate h to the assigned register and p otherwise. healthy-

branch forbids weakly poisoned branching conditions even though they are safe to leak. This

is to avoid that 𝑃 and [𝑃]ra arrive at different program points (up to Φ). Branching with weakly

poisoned registers could be supported by letting one state speculate while the other does regular

branching to keep them at the same program point. However, this would violate the condition

|S | = |T | and leads to a less intuitive product definition.

Lemma 4
Proof. We do a case distinction on the transition rule for (S, T , P) 𝛾 :𝜅 ::𝛿 :𝜆 (U ,V ,Q). To that

end, let P = P′.ps and Q = Q′.ps′, U = U ′.𝑢 and V = V ′.𝑣 , and S = S′.𝑠 and T = T ′.𝑡 . Let further
be 𝑖 = 𝑃 𝑠 and 𝑖′ = [𝑃]ra 𝑡 . For all cases except poison-rollback and healthy-spec it suffices to

show that 𝑢 Ψps′ 𝑣 . All those rules only modify the top states and poison values, so Q′ = Q′
. The

definition of ΨQ
is then satisfied from S′ ΨQ′

T ′
.

We first do the separate two cases who change the size of the speculating states.

▶ healthy-spec Then, 𝑖 = br𝑏, ps𝑏 = h, and Q = P′.ps.ps. Further, 𝑢 and 𝑠 as well as 𝑡 and 𝑣 are

fully equal except for the program counter. Because 𝑠 Ψps 𝑡 and Ψps
is indifferent to the program

counter, 𝑢 Ψps 𝑣 .

▶ poison-rollback Then, U = S′ ΨP′ T ′ = V .

Now to the other cases.

▶ poison-fill, poison-spill, poison-move, poison-shuffle-sfence, poison-sfence, poison-slh,

poison-nop, and healthy-branch ps′ = ps. Further, 𝑢 and 𝑠 as well as 𝑡 and 𝑣 are fully equal

except for the program counter. Because 𝑠 Ψps 𝑡 and Ψps
is indifferent to the program counter,

𝑢 Ψps 𝑣 .
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▶ poison-load-stkunsafe, poison-load-safe, and poison-load-unsafe Then, 𝑖 = 𝑎 ≔ a[𝑏]
and ps′ = ps[𝑎 ↦→ ps]. Further, 𝑢 and 𝑠 as well as 𝑡 and 𝑣 are equal except for the program

counter and 𝑎 as well as 𝑎′ = Ψ 𝑣 𝑎. But 𝑎 is poisoned in ps′, so Ψps′
is indifferent to its value,

𝑢 Ψps′ 𝑣 .

▶ healthy-load-safe Then, 𝑖 = 𝑎 ≔ a[𝑏] and n = 𝜌𝑠 𝑏 and ps′ = ps[𝑎 ↦→ ps a n] ≤ ps[𝑎 ↦→ ps].
Further, 𝑢 and 𝑠 as well as 𝑡 and 𝑣 are equal except for the program counter and 𝑎 as well as

𝑎′ = Ψ 𝑣 𝑎. The value of 𝑎 is 𝜇𝑠 a n and of 𝑎′ is 𝜇𝑡 a n. But 𝑎 has the poison value of ps for (a, n)
in ps′, so 𝑢 Ψps′ 𝑣 follows from 𝑠 Ψps 𝑡 .

▶ healthy-load-unsafe Analogue to the previous case, but (a, n) swapped to (b,m).
▶ poison-store-stkunsafe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝛾 = su a l and 𝛿 = su stkm and Ψ 𝑣 𝑑 =

(stk,m). We get ps′ = ps[𝑑, (stk,m) ↦→ p]. Further, values of 𝑢 and 𝑠 are equal except for 𝑑 and

values of 𝑡 and 𝑣 are equal except Ψ 𝑣 𝑑 = (stk,m). Again, those are poisoned in ps′, so 𝑢 Ψps′ 𝑣

follows from 𝑠 Ψps 𝑡 .

▶ poison-store-safe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝜌𝑠 𝑏 = k and 𝜌𝑡 (Ψ 𝑡 𝑏 = 0 due to weak poisonedness.

We get ps′ = ps[(a, k), (a, 0) ↦→ p]. Further, values of 𝑢 and 𝑠 are equal except for (a, k) and
values of 𝑡 and 𝑣 are equal except (a, 0). Again, those are poisoned in ps′, so 𝑢 Ψps′ 𝑣 follows

from 𝑠 Ψps 𝑡 .

▶ poison-store-unsafe Analogue to the previous case, but k swapped to l.
▶ healthy-store-safe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝜌𝑠 𝑏 = 𝜌𝑡 (Ψ 𝑡 𝑏) = n ∈ |a| due to healthiness. Let

further Ψ 𝑡 𝑐 = 𝑐′. We get ps′ = ps[(a, n) ↦→ ps 𝑐]. Further, values of 𝑢 and 𝑠 are equal except for

(a, k) and values of 𝑡 and 𝑣 are equal except (a, 0). The value of (a, n) in 𝑢 is 𝜌𝑠 𝑐 and in 𝑣 is 𝜌𝑡 𝑐
′
.

But (a, n) has the poison value of ps for 𝑐 in ps′, so 𝑢 Ψps′ 𝑣 follows from 𝑠 Ψps 𝑡 .

▶ healthy-store-unsafe Analogue, but (a, n) swapped for (b,m).
▶ poison-shuffle-slh Then, 𝑖′ = slh𝑎′, where Ψ 𝑠 𝑎 = Ψ 𝑡 𝑎 = 𝑎′. We get ps′ = ps[𝑎 ↦→ wp]. 𝑡 is

equal to 𝑣 and if S is speculating, then ps′ is set to wp and 𝜌𝑣 𝑎
′ = 0. Otherwise, 𝑡 is equal to 𝑣 in

values. In both cases, 𝑢 Ψps′ 𝑣 follows from 𝑠 Ψps 𝑡 . □

Remaining transfer functions for 𝑃 :: [𝑃]ra

𝐹nop›sc ps = 𝐺𝑎′ ≔ 𝑏′›sc ps = 𝐺𝑎′ ≔ stk[l]›sc ps = 𝐺stk[l] ≔ 𝑏′›sc ps = ps

𝐹sfence›sc ps = h

𝐹br𝑏›sct, scf
ps =

{
ps pr𝑏 = h
p pr𝑏 ≥ wp

Lemma 6
Proof. By induction, all transitions update poison types monotonically. For the induction step,

consider S = S′.𝑠 and T = T ′.𝑡 . We do a case distinction on the transition rule for (S, T ,XS,T ) 𝛾 :𝜅 ::𝛿 :𝜆

(U ,V ,Q). To that end, let XS,T = P′.ps and Q = Q′.ps′, U = U ′.𝑢 and V = V ′.𝑣 . Let further be
𝑖 = 𝑃 𝑠 and 𝑖′ = [𝑃]ra 𝑡 . We need to show for all cases except poison-rollback and healthy-

spec that ps′ ≤ 𝐹𝑖 ps (respectively ps′ ≤ 𝐺𝑖′ ps for shuffling states). Then, by equation (fwd),

ps′ ≤ 𝐹𝑖 ps ≤ X (𝑢, 𝑣) (respectively ps′ ≤ 𝐺𝑖′ ps ≤ X (𝑢, 𝑣)). All those rules only modify the top

states and poison values, so P′ = Q′ = XU ′,V ′ . Together, we get Q ≤ XU ,V .

We first do the separate two cases who change the size of the speculating states.

▶ healthy-spec Then, 𝑖 = br𝑏, ps𝑏 = h, and Q = P.ps. We have ps = 𝐹𝑖 ps ≤ X (𝑠, 𝑡). And
because U = S.𝑢 and V = T .𝑣 , P ≤ P, we have P.ps ≤ P.X (𝑠, 𝑡) = XU ,V .

▶ poison-rollback Then, U = S′ and V = T ′
, and since XS,T = XS′,T ′.ps, Q′ = XU ,V .

Now to the other cases.
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▶ poison-fill, poison-spill, poison-move, and poison-shuffle-sfence ps′ = ps = 𝐺𝑖′ ps.
▶ poison-sfence, poison-slh, poison-nop, and healthy-branch ps′ = ps = 𝐹𝑖 ps.
▶ poison-load-stkunsafe, poison-load-safe, and poison-load-unsafe Then, 𝑖 = 𝑎 ≔ a[𝑏]

and ps′ = ps[𝑎 ↦→ ps] = 𝐹𝑖 ps.
▶ healthy-load-safe Then, 𝑖 = 𝑎 ≔ a[𝑏] and n = 𝜌𝑠 𝑏 and ps′ = ps[𝑎 ↦→ ps a n] ≤ ps[𝑎 ↦→

ps] = 𝐹𝑖 ps.
▶ healthy-load-unsafe Then, 𝑖 = 𝑎 ≔ a[𝑏] and 𝛾 = lu bm and ps′ = ps[𝑎 ↦→ ps bm] ≤

ps[𝑎 ↦→ ps] = 𝐹𝑖 ps.
▶ poison-store-stkunsafe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝛾 = su a l and 𝛿 = su stkm and Ψ 𝑡 𝑑 =

(stk,m). We get ps′ = ps[𝑑, (stk,m) ↦→ p] ≤ ps[Mem ↦→⊔ ps 𝑐] [Reg, a ↦→ p] = 𝐹𝑖 ps.
▶ poison-store-safe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝜌𝑠 𝑏 = k and 𝜌𝑡 (Ψ 𝑡 𝑏 = 0 due to weak poisonedness.

We get ps′ = ps[(a, k), (a, 0) ↦→ p] ≤ ps[Mem ↦→⊔ ps 𝑐] [Reg, a ↦→ p] = 𝐹𝑖 ps.
▶ poison-store-unsafe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝛾 = su a l and 𝜌𝑡 (Ψ 𝑡 𝑏 = 0 due to weak

poisonedness. We get ps′ = ps[(a, l), (a, 0) ↦→ p] ≤ ps[Mem ↦→⊔ ps 𝑐] [Reg, a ↦→ p] = 𝐹𝑖 ps.
▶ healthy-store-safe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝜌𝑠 𝑏 = 𝜌𝑡 (Ψ 𝑡 𝑏 = n ∈ |a| due to healthiness. We

get ps′ = ps[(a, n) ↦→ ps 𝑐] ≤ ps[Mem ↦→⊔ ps 𝑐] [Reg, a ↦→ p] = 𝐹𝑖 ps.
▶ healthy-store-unsafe Then, 𝑖 = a[𝑏] ≔ 𝑐 and 𝛿 = 𝛾 = su bm. We get ps′ = ps[(b,m) ↦→

ps 𝑐] ≤ ps[Mem ↦→ ps 𝑐] [Reg, a ↦→⊔ p] = 𝐹𝑖 ps.
▶ poison-shuffle-slh Then, 𝑖′ = slh𝑎′, where Ψ 𝑠 𝑎 = Ψ 𝑡 𝑎 = 𝑎′. We get ps′ = ps[𝑎 ↦→ wp] =

𝐺𝑖′ ps. □

Full proof for Lemma 7
Like for dead code elimination in Section 5, we need to prove that (≺,◁) (i) is a simulation

(Definition 4), (ii) respects sec (Definition 2), and (iii) is snippy (Definition 6).

The intermediary lemmas are proved subsequently in their own sections.

Proof that (≺,◁) is sec-respecting. We required sec stk = L so when 𝑡1 =sec 𝑡2, and 𝑠1 Ψ
h 𝑡1

as well as 𝑠2 Ψ
h 𝑡2, then 𝑠1 and 𝑡1 equal on all values in memory other than stk (remember that ps is

not defined on stk). Similarly, 𝑠2 and 𝑡2 equal on memory. So, 𝑠1 =sec 𝑠2 if and only if 𝑡1 =sec 𝑡2. □

Proof that (≺,◁) is a simulation. In order to prove that ≺ is a simulation (Definition 4), we

first need to show that for all initial 𝑡 of [𝑃]ra there is an initial 𝑠 for 𝑃 with 𝑡 ≺ 𝑠 . Secondly, for all

pairs of states T ≺ S, we need to derive ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝜀⟩ in Rules 4.1. For the initial states,

let 𝑡 = (init′, 𝜌 ′, 𝜇′). We construct 𝑠 = (init, 𝜌, 𝜇). First, we know from instruction matching, that

Φ init = init′, thus 𝑠 Φ 𝑡 . We can then choose 𝜇 = 𝜇′ and 𝜌 𝑎 = JΨ init′ 𝑎K𝑡 .
For the second part, consider T ≺ S. We need to provide a proof for ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝜀⟩. The

case where T is final is trivial, so consider non-final T and S. We need two small helping-lemmas

that state that Φ-injected instructions and shuffle instructions of [𝑃]ra are preserved to the product.

The proof of these we skip, but they rely on the fact that (Φ,Ψ) is poison-typable with X.

Lemma 8. Let T ≺ S, T 𝛿 :𝜆 X , and P.ps = XS,T . Then, (S, T , ps) 𝛾 :𝜅 ::𝛿 :𝜆 (U ,X , ps′) with U Ψ
ps′
X X .

Lemma 9. Let U Ψ
ps
X X and X 𝑑 :𝑙 ∗ V be shuffle only in [𝑃]ra. Then, 𝑃 :: [𝑃]ra has a unique

execution (U ,X , ps) 𝜀 :𝜀 ::𝑑 :𝑙 ∗ (U ,V , ps′) with U Ψ
ps′
X V .

Let T = T ′.𝑡 and S = S′.𝑠 , and X (𝑠, 𝑡) = ps. We sketch how to derive ⟨ ≺ , ⊳T≺S ⊢ T ≺t S : 𝜀⟩. We

will first explore executions from T in [𝑃]ra with tgt, perform a directive transformation with

direct-tf, replay the execution from S in 𝑃 , and finally prove that the reached states belong to ≺ to

end the proof with coind. First, we explore executions from T in [𝑃]ra with tgt. Every execution

in [𝑃]ra from T eventually enters a Φ-injected state. So we explore executions T 𝛿 :𝜆 X 𝑑 :𝑙 ∗ V ,
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where V is again Φ-injected but no intermediary state is. The explored executions have the shape

of the teal and red paths of [𝑃]ra in Figure 4. We thus need to prove ⟨ ≺ , ⊳T≺S ⊢ V ≺t S : 𝛿.𝑑⟩. The
next step is to perform directive transformation with ⊳T≺S . But we defined the transformation

on Φ-intervals. So we find the appropriate transitions for T 𝛿 :𝜆 X 𝑑 :𝑙 ∗ V in 𝑃 :: [𝑃]ra. For the
first transition, Lemma 8 yields (S, T , ps) 𝛾 :𝜅 ::𝛿 :𝜆 (U ,X , ps′) so that U Ψ

ps′
X X . For the remaining

transitions, there are two cases:

▶ No rb occurs in 𝑑 . Then, X 𝑑 :𝑙 ∗ V is shuffle-only, and we can apply Lemma 9 for transitions

(U ,X , ps′) 𝜀 :𝜀 ::𝑑 :𝑙 ∗ (U ,V , ps′′) with U Ψ
ps′′
X V . Together with the first transition, 𝑃 :: [𝑃]ra can

execute the transitions (S, T , ps) 𝛾 :𝜅 ::𝛿 :𝜆 (U ,X , ps′) 𝜀 :𝜀 ::𝑑 :𝑙 ∗ (U ,V , ps′′). This is precisely the red

Φ-interval, so 𝛾 ⊳T≺S 𝛿.𝑑 . We can thus use direct-tf and are left proving ⟨ ≺ , ⊳T≺S ⊢ V ≺s S : 𝛾⟩.
However, (S, T , ps) 𝛾 :𝜅 ::𝛿 :𝜆 (U ,X , ps′) already provides us the replay S 𝛾 :𝜅 U in 𝑃 . We can use

it with src, and it remains to show ⟨ ≺ , ⊳T≺S ⊢ V ≺s U : 𝜀⟩. In order to use coind, we need to

establish V ≺ U , i.e. U Φ V and U ΨX V . The condition U Φ V holds because it has been the

condition for terminating exploration in [𝑃]ra. For the latter condition, we have already established

U Ψ
ps′′
X V . Thanks to Lemma 6, we also have XU ′,V ′.ps′′ ≤ XU ,V , where U = U ′.𝑢 and V = V ′.𝑣 . We

designed the lattice so that Ψps
is monotonic in ps, so they yield U ΨX V . Thus, we get V ≺ U and

can use coind.

▶ Otherwise, let rb occur in 𝑑 . Then, the explored execution from X is X 𝑑 ′
:𝑙 ′ ∗ Y rb:rb V

with 𝑑 = 𝑑 ′.rb. Indeed, 𝑑 must end with rb, because V is already Φ-injected: When X = X ′.𝑥 and

U = U ′.𝑢, then V = X ′
. Further, X ′

and U ′
are already contained in T and S, respectively. Because

S Φ T we also have U ′ Φ X ′ = V . So V is Φ-injected and exploration stopped upon discovering it.

Again, by Lemma 9 there is (U ,X , ps′) 𝜀 :𝜀 ::𝑑 :𝑙 ∗ (U , Y , ps′′) with U Ψ
ps′′
X Y . By definition of 𝑃 :: [𝑃]ra,

(U , Y , ps′) rb:rb ::rb:rb (U ′,X ′,XU ′,X ′ ). This is one of the teal Φ-intervals, so 𝛾.rb ⊳T≺S 𝛿.𝑑 ′.rb. The
remaining arguments for src and coind are similar to the previous case. □

Corollary 1. For T ≺ S, (S, T ,XS,T ) 𝑒 :𝑘 ::𝑑 :𝑙 ∗ (U ,V ,Q) is a Φ-interval iff (S, T ) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U ,V ).

Proof that (≺,◁) is snippy. In order to prove the simulation snippy, we are given the black

parts of Figure 2. So, consider T1 ≺ S1, T2 ≺ S2, T1 ≡ T2, and S1 ≡ S2. Further, consider a simulation

interval (S1, T1) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U1,V1) and S2 𝑒 :𝑘 U2. We need to prove (S2, T2) 𝑒 :𝑘 ⊳𝑑 :𝑙 (U2,V2). As
simulation intervals are the same as Φ-intervals, we have the Φ-interval (S1, T1,XS1,T1 ) 𝑒 :𝑘 ::𝑑 :𝑙 ∗

(U1,V1, ps′), and want to prove that (S2, T2,XS2,T2 ) 𝑒 :𝑘 ::𝑑 :𝑙 (U2,V2, ps′). We again split the in-

terval into the instruction-matched transition and a shuffle sequence: (S1, T1,XS1,S1 ) 𝛾 :𝜅 ::𝛿 :𝜆

(W1,X1, ps′′) 𝑒′ :𝑘 ′
::𝑑 ′

:𝑙 ′ ∗ (U1,V1, ps′). The difficult part is to reproduce the instruction-matched

transition from (S2, T2,XS2,T2 ). BecauseXS1,T1 is only dependent on program counters,XS1,T1 = XS2,T2 .

Lemma 10. There is a transition (S2, T2,XS2,T2 ) 𝛾 :𝜅 ::𝛿 :𝜆 (U2,V2, ps′) in 𝑃 :: [𝑃]ra.
We reproduce the second part of the Φ-interval, (W1,X1, ps′′1) 𝑒′ :𝑘 ′

::𝑑 ′
:𝑙 ′ ∗ (U1,V1, ps′1). Once

more, we perform case distinction on whether 𝑑 ′ and 𝑒′ follow the red or teal paths in Figure 4.

▶ No rb occurs in 𝑑 ′. In this case, 𝑑 ′ is shuffle-only and 𝑒′ = 𝜀. Because shuffle semantics are

deterministic and all have the same directive •, the following lemma is straightforward to show.

Together with Lemma 9, the shuffle sequence is reproduced from (W2,X2, ps′).
Lemma 11. If V1 ≡ V2 and 𝑃 V1 = sh›sc′ with shuffle-only V1

𝑑 :𝑙 ∗ X1, then V2

𝑑 :𝑙 ∗ X2.

Indeed, we complete reproduction in this case: With (S2, T2, ps) 𝛾 :𝜅 ::𝛿 :𝜆 (W2,X2, ps′′) from
Lemma 10 and (W2,X2, ps′′2) 𝜀 :𝜀 ::𝑑 ′

:𝑙 ′ ∗ (U2,V2, ps′) from Lemmas 9 and 11, we constructed

(S2, T2,XS2,T2 ) 𝑒 :𝑘 ::𝑑 :𝑙 (U2,V2, ps′).
▶ Otherwise, let rb occur in 𝑑 . Then, (W1,X1, ps′′) 𝑒′ :𝑘 ′

::𝑑 ′
:𝑙 ′ ∗ (U1,V1, ps′) is actually the

teal path (W1,X1, ps′′) 𝜀 :𝜀 ::𝑑 ′′
:𝑙 ′′ ∗ (W ′

1
,X ′

1
, ps′′′) rb:rb ::rb:rb (U1,V1, ps′), where 𝑑 ′′ is a shuffle
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sequence. Same as in the previous case, we can reproduce (W2,X2, ps′′) 𝜀 :𝜀 ::𝑑 ′′
:𝑙 ′′ ∗ (W ′

2
,X ′

2
, ps′′′).

The product can clearly execute (W ′
2
,X ′

2
, ps′′′) rb:rb ::rb:rb (U2,V2, ps′) because |W ′

2
| = |X ′

2
| =

|W ′
1
| = |X ′

1
| > 1. Reproduction of (S2, T2,XS2,T2 ) 𝑒 :𝑘 ::𝑑 :𝑙 (U2,V2, ps′) is done. □

Lemma 8
Proof. By construction of the product. Case distinction on T1 𝛿 :𝜆 X1. Throughout the proof,

we assume Ψ T 𝑎 = 𝑎′, Ψ T 𝑏 = 𝑏′, and Ψ T 𝑐 = 𝑐′. Further, we invariantly let T = T ′.𝑡 , S = S′.𝑠 ,
X = X ′.𝑥 , U = U ′.𝑢, Also 𝑃 T = 𝑖′ and 𝑃 S = 𝑖 . S Ψ

ps′
X X follows from Lemma 4.

▶ nop and asgn We skip nop. For asgn, let 𝑖′ = 𝑎′ ≔ 𝑏′ ⊕ 𝑐′›sc′ . Then 𝑖 = 𝑎 ≔ 𝑏 ⊕ 𝑐›sc. Clearly

there is U with S •:• U . Rule poison-asgn yields (S, T , ps) •:• ::•:• (U ,X , ps′). U Ψ
ps′
X X follows

from construction of Rule poison-asgn.

▶ load For load, let 𝑖′ = 𝑎′ ≔ a[𝑏′]›sc′ and 𝜆 = ld n. We have ps𝑏 ≥ wp, thus 𝜌T 𝑏′ = 0 or

𝜌T 𝑏
′ = 𝜌S 𝑏.

▷ 𝜌S 𝑏 = m ∈ |a| Clearly there is U with S •:ldm U .

poison-load-safe yields (S, T , ps) •:ldm ::•:ld n (U ,X , ps′).
▷ 𝜌S 𝑏 = m ∉ |a| Clearly there is U with S lu a 0:ldm U .

poison-load-unsafe yields (S, T , ps) lu a 0:ldm ::•:ld n (U ,X , ps′).
▶ store For store, let 𝑖′ = a[𝑏′] ≔ 𝑐′›sc′ and 𝜆 = st n. We have ps𝑏 ≥ wp, thus 𝜌T 𝑏′ = 0 or

𝜌T 𝑏
′ = 𝜌S 𝑏.

▷ 𝜌S 𝑏 = m ∈ |a| Clearly there is U with S •:stm U .

poison-store-safe yields (S, T , ps) •:stm ::•:st n (U ,X , ps′).
▷ 𝜌S 𝑏 = m ∉ |a| Clearly there is U with S su a 0:stm U .

poison-store-unsafe yields (S, T , ps) su a 0:stm ::•:st n (U ,X , ps′).
▶ load-unsafe For load-unsafe, let 𝑖′ = 𝑎′ ≔ a[𝑏′]›sc′ and 𝜆 = ld n and 𝛿 = lu bm. We have

ps𝑏 ≥ wp, thus 𝜌T 𝑏′ = 0 or 𝜌T 𝑏
′ = 𝜌S 𝑏. Due to 0 ∈ |a|, only 𝜌T 𝑏′ = 𝜌S 𝑏 needs to be considered.

We consider two cases:

▷ b ≠ stk There is U with S lu bm:ldm U .

healthy-load-unsafe yields (S, T , ps) •:ldm ::•:ld n (U ,X , ps′).
▷ b = stk There is U with S lu a 0:ldm U .

poison-load-stkunsafe yields (S, T , ps) lu a 0:ldm ::•:ld n (U ,X , ps′).
▶ store-unsafe For store-unsafe, let 𝑖′ = a[𝑏′] ≔ 𝑐′›sc′ and 𝜆 = st n and 𝛿 = su bm. We have

ps𝑏 ≥ wp, thus 𝜌T 𝑏′ = 0 or 𝜌T 𝑏
′ = 𝜌S 𝑏. Due to 0 ∈ |a|, only 𝜌T 𝑏′ = 𝜌S 𝑏 needs to be considered.

We consider two cases:

▷ b ≠ stk There is U with S su bm:stm U .

healthy-store-unsafe yields (S, T , ps) •:stm ::•:st n (U ,X , ps′).
▷ b = stk There is U with S su a 0:stm U .

poison-store-stkunsafe yields (S, T , ps) su a 0:stm ::•:st n (U ,X , ps′).
▶ branch For branch, let 𝑖′ = br𝑏′›sc′t, sc′f and 𝜆 = br b and 𝛿 = br. We have ps𝑏 = h, thus

𝜌T 𝑏
′ = 𝜌S 𝑏. Then there is U with S br:br b U . healthy-branch yields (S, T , ps) •:br b ::•:br b

(U ,X , ps′).
▶ spec For spec, let 𝑖′ = br𝑏′›sc′t, sc′f and 𝜆 = br b and 𝛿 = sp. We have ps𝑏 = h, thus 𝜌T 𝑏′ = 𝜌S 𝑏.

Then there is U with S sp:br b U . healthy-spec yields (S, T , ps) sp:br b ::sp:br b (U ,X , ps′).
▶ sfence For sfence, let 𝑖′ = sfence›sc′ and 𝜆 = • and 𝛿 = •. Then |T | = 1 = |S |. Thus there is U

with S •:• U . poison-sfence yields (S, T , ps) •:• ::•:• (U ,X , ps′).
▶ slh For slh, let 𝑖′ = slh𝑎′›sc′ and 𝜆 = • and 𝛿 = •. Thus there is U with S •:• U . poison-slh

yields (S, T , ps) •:• ::•:• (U ,X , ps′). □
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Lemma 9
Proof. Prove this for a single step, the rest is induction. Let further be U = U ′.𝑢 and X = X ′.𝑥 .

Let further be ps = (pr, pm). Let 𝑢 = (pc, 𝜌, 𝜇), 𝑥 = (pc′, 𝜌 ′, 𝜇′), S Ψ
ps
X X and [𝑃]ra pc′ = sir′. We do

case distinction on si.

▶ 𝑎′ ≔ 𝑏′›r′ Then, 𝑥 = (pc′, 𝜌 ′, 𝜇′) •:• (r′, 𝜌 ′′, 𝜇′) = 𝑣 with 𝜌 ′ [𝑎′ ↦→ 𝜌 ′ 𝑏′] = 𝜌 ′′. By shuffle

conformity, we know that there is 𝑏 with Ψ pc′ 𝑏 = 𝑏′. Further, we know that Ψ r′ coincides with
Ψ pc′ except for 𝑏. Also, ps = ps′. By induction, S Ψ

ps
X X , we have JΨ pc′ 𝑏K𝑣 = 𝜌 ′′ 𝑎′ = 𝜌 ′ 𝑏′ =

JΨ pc′ 𝑏K𝑥 = 𝜌 𝑏 as required for S Ψ
ps
X V . poison-move yields the transition.

▶ 𝑎′ ≔ stk[l]›r′ Then, 𝑥 = (pc′, 𝜌 ′, 𝜇′) •:ld l (r′, 𝜌 ′′, 𝜇′) = 𝑣 with 𝜌 ′ [𝑎′ ↦→ 𝜇 stk l] = 𝜌 ′′. By
shuffle conformity, we know that there is 𝑏 with Ψ pc′ 𝑏 = l. Further, we know that Ψ r′ coincides
with Ψ pc′ except for 𝑏, where Ψ r′ 𝑏 = 𝑎′. Also, ps = ps′. By induction, S Ψ

ps
X X , we have

JΨ pc′ 𝑏K𝑣 = 𝜌 ′′ 𝑎′ = 𝜇′ stk l = JΨ pc′ 𝑏K𝑥 = 𝜌 𝑏 as required for S Ψ
ps
X V . poison-fill yields the

transition.

▶ stk[l] ≔ 𝑏′›r′ Then, 𝑥 = (pc′, 𝜌 ′, 𝜇′) •:st l (r′, 𝜌 ′, 𝜇′′) = 𝑣 with 𝜇′ [(stk, l) ↦→ 𝜌 ′ 𝑏′] = 𝜇′′.
By shuffle conformity, we know that there is 𝑏 with Ψ pc′ 𝑏 = 𝑏′. Further, we know that Ψ r′

coincides with Ψ pc′ except for 𝑏, where Ψ r′ 𝑏 = l. Also, ps = ps′. By induction, S Ψ
ps
X X , we

have JΨ pc′ 𝑏K𝑣 = 𝜇′′ stk l = 𝜌 ′ 𝑏′ = JΨ pc′ 𝑏K𝑥 = 𝜌 𝑏 as required for S Ψ
ps
X V . poison-spill

yields the transition.

▶ sfence›r′ Then |X ′ | = 0 and 𝑥 = (pc′, 𝜌 ′, 𝜇′) •:• (r′, 𝜌 ′, 𝜇′) = 𝑣 . Also, ps = ps′. 𝑠 Ψps
X 𝑥 implies

𝑠 Ψ
ps
X 𝑣 = V . poison-shuffle-sfence yields the transition.

▶ slh𝑎′›r′ If |X ′ | = 0, this case is fully analogue to the previous one. Thus, let |X ′ | ≥ 1. Then,

𝑥 = (pc′, 𝜌 ′, 𝜇′) •:• (r′, 𝜌 ′′, 𝜇′) = 𝑣 with 𝜌 ′ [𝑎′ ↦→ 0] = 𝜌 ′′. By shuffle conformity, we know that

Ψ pc′ = Ψ r′. Also ps′ = (pr[𝑎 ↦→ wp], pm). Indeed, S Ψ
ps
X X and JΨ pc′ 𝑎K𝑣 = 0 yields S Ψ

ps
X V .

poison-shuffle-slh yields the transition. □

Lemma 10
Proof. By case distinction on (S1, T1, ps) 𝛾 :𝜅 ::𝛿 :𝜆 (U1,V1, ps′). For all cases, and 𝑖 ∈ {1, 2}: Let

T𝑖 = T ′
𝑖 .𝑡𝑖 , S𝑖 = S′𝑖 .𝑠𝑖 , V𝑖 = V ′

𝑖 .𝑣𝑖 , and U𝑖 = U ′
𝑖 .𝑢𝑖 , and 𝑡1 ≡ pc′ ≡ 𝑡2 as well as 𝑠1 ≡ pc ≡ 𝑠2. Further, let

[𝑃]ra pc′ = 𝑖′ and 𝑃 pc = 𝑖 , and assume Ψ pc′ 𝑎 = 𝑎′, Ψ pc′ 𝑏 = 𝑏′, and Ψ pc′ 𝑐 = 𝑐′ if they occur in 𝑖

and 𝑖′. Finally, let XS1,T1 = XS2,T2 = P.ps. Please note, that ps′ is not dependent on values: Whenever

the same rule in 𝑃 :: [𝑃]ra is executed, then the same ps′ is obtained. The arguments for equality of

ps′ are thus skipped.

▶ healthy-store-safe In this case, 𝑖 = a[𝑏] ≔ 𝑐›sc and 𝑖′ = a[𝑏′] ≔ 𝑐′›r′ . The presumptions

for transition (S1, T1, ps) 𝛾 :𝜅 ::𝛿 :𝜆 (U1,V1, ps′) yield 𝑡1
•:st n 𝑣1, and 𝑠1

•:st n 𝑢1, and ps𝑏 = h.
Our assumption is that 𝑠2

•:st n 𝑢2 can be executed. The leaked address is n = 𝜌𝑠2 𝑏 ∈ |a|. Due
to ps𝑏 = h and S2 Ψ

ps
X T2, 𝜌𝑡2 𝑏

′ = 𝜌𝑠2 𝑏 = n. This suffices for T2 •:st n V2, and in turn for

(S2, T2, ps) •:st n ::•:st n (U2,V2, ps′).
▶ poison-load-stkunsafe Then, 𝑖 = 𝑎 ≔ a[𝑏]›sc and 𝑖 = 𝑎 ≔ a[𝑏]›sc. The presumptions yield

𝑡1
lu stkm:ld n 𝑣1, and 𝑠1

lu b l:ld n 𝑢1, and ps𝑏 = h. Our assumption is 𝑠2
lu b l:ld n 𝑢2. Due to

ps𝑏 = h, 𝜌𝑡1 𝑏
′ = 𝜌𝑠1 𝑏 = n = 𝜌𝑠2 𝑏 = 𝜌𝑡2 𝑏

′ ∉ |a|. That justifies T2 lu stkm:ld n V2. That suffices

for (S2, T2, ps) lu b l:ld n ::lu stkm:ld n (U2,V2, ps′).
▶ poison-nop and poison-asgn Trivial.

▶ poison-store-stkunsafe Then, 𝑖 = a[𝑏] ≔ 𝑐›sc, 𝑡1
su stkm:st n 𝑣1, and 𝑠1

su b l:st n 𝑢1, and

ps𝑏 = h. Our assumption is 𝑠2
su b l:st n 𝑢2. Due to ps𝑏 = h, 𝜌𝑡1 𝑏

′ = 𝜌𝑠1 𝑏 = n = 𝜌𝑠2 𝑏 =

𝜌𝑡2 𝑏
′ ∉ |a|. That justifies T2 lu stkm:ld n V2. That suffices for (S2, T2, ps) su b l:st n ::lu stkm:ld n

(U2,V2, ps′).
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▶ poison-load-safe Then, 𝑖 = 𝑎 ≔ a[𝑏]›sc, 𝑡1 •:ld 0 𝑣1, and 𝑠1
•:ld k 𝑢1, and ps𝑏 = wp. Fur-

ther 𝑠2
•:ld k 𝑢2. Due to ps𝑏 = wp, 𝜌T2 𝑏

′ = 0 ∈ |a| justifies T2 •:ld 0 V2. That suffices for

(S2, T2, ps) •:ld k ::•:ld 0 (U2,V2, ps′).
▶ poison-load-unsafe Then, 𝑖 = 𝑎 ≔ a[𝑏]›sc, 𝑡1 •:ld 0 𝑣1, and 𝑠1

lu b l:ld k 𝑢1, and ps𝑏 = wp.
Further 𝑠2

lu b l:ld k 𝑢2. Due to ps𝑏 = wp, 𝜌T2 𝑏
′ = 0 ∈ |a| justifies T2 •:ld 0 V2. That suffices for

(S2, T2, ps) lu b l:ld k ::•:ld 0 (U2,V2, ps′).
▶ healthy-load-safe Then, 𝑖 = 𝑎 ≔ a[𝑏]›sc, 𝑡1 •:ld n 𝑣1, and 𝑠1

•:ld n 𝑢1, and ps𝑏 = h. Further
𝑠2

•:ld n 𝑢2. Due to ps𝑏 = h, 𝜌T1 𝑏
′ = 𝜌S1 𝑏 = n = 𝜌S2 𝑏 = 𝜌T2 𝑏

′ ∈ |a| justifies T2 •:ld n V2. That

suffices for (S2, T2, ps) •:ld n ::•:ld n (U2,V2, ps′).
▶ healthy-load-unsafe Then, 𝑖 = 𝑎 ≔ a[𝑏]›sc, 𝑡1 lu bm:ld n 𝑣1, and 𝑠1

lu bm:ld n 𝑢1, and ps𝑏 = h.
Further 𝑠2

lu bm:ld n 𝑢2. Due to ps𝑏 = h, 𝜌T1 𝑏
′ = 𝜌S1 𝑏 = n = 𝜌S2 𝑏 = 𝜌T2 𝑏

′ ∉ |a| justifies
T2 lu bm:ld n V2. That suffices for (S2, T2, ps) lu bm:ld n ::lu bm:ld n (U2,V2, ps′).

▶ poison-store-safe Then, 𝑖 = a[𝑏] ≔ 𝑐›sc, 𝑡1
•:st 0 𝑣1, and 𝑠1

•:st k 𝑢1, and ps𝑏 = wp. Fur-
ther 𝑠2

•:st k 𝑢2. Due to ps𝑏 = wp, 𝜌T2 𝑏
′ = 0 ∈ |a| justifies T2 •:st 0 V2. That suffices for

(S2, T2, ps) •:st k ::•:st 0 (U2,V2, ps′).
▶ poison-store-unsafe Then, 𝑖 = a[𝑏] ≔ 𝑐›sc, 𝑡1

•:st 0 𝑣1, and 𝑠1
su b l:st k 𝑢1, and ps𝑏 = wp.

Further 𝑠2
su b l:st k 𝑢2. Due to ps𝑏 = wp, 𝜌T2 𝑏

′ = 0 ∈ |a| justifies T2 •:st 0 V2. That suffices for

(S2, T2, ps) su b l:st k ::•:st 0 (U2,V2, ps′).
▶ healthy-store-unsafe Then, 𝑖 = a[𝑏] ≔ 𝑐›sc, 𝑡1

su bm:st n 𝑣1, and 𝑠1
su bm:st n 𝑢1, and

ps𝑏 = h. Further 𝑠2 su bm:st n 𝑢2. Due to ps𝑏 = h, 𝜌𝑡1 𝑏
′ = 𝜌𝑠1 𝑏 = n = 𝜌𝑠2 𝑏 = 𝜌𝑡2 𝑏

′ ∉ |a| justifies
T2 su bm:st n V2. That suffices for (S2, T2, ps) su bm:st n ::su bm:st n (U2,V2, ps′).

▶ healthy-branch Then, 𝑖 = br𝑏›sct, scf , 𝑡1
br:br b 𝑣1, and 𝑠1

br:br b 𝑢1, and ps𝑏 = h. Further
𝑠2

br:br b 𝑢2. Due to ps𝑏 = h, (𝜌𝑡1 𝑏′ == 0) = (𝜌𝑠1 𝑏 == 0) = b = (𝜌𝑠2 𝑏 == 0) = (𝜌𝑡2 𝑏′ == 0)
justifies T2 br:br b V2. That suffices for (S2, T2, ps) br:br b ::br:br b (U2,V2, ps′).

▶ healthy-spec Then, 𝑖 = br𝑏›sct, scf , T1
sp:br b T1.𝑣1, and S1 sp:br b S1.𝑢1, and ps𝑏 = h. Further

S2 sp:br b S2.𝑢2. Due to ps𝑏 = h, (𝜌T1 𝑏′ == 0) = (𝜌S1 𝑏 == 0) = b = (𝜌S2 𝑏 == 0) = (𝜌T2 𝑏′ == 0)
justifies T2 sp:br b T2.𝑣2 = V2. That suffices for (S2, T2, ps) sp:br b ::sp:br b (U2,V2, ps′).

▶ poison-sfence Then, 𝑖 = sfence›sc, 𝑡1
•:• 𝑣1, and 𝑠1

•:• 𝑢1, and |T1 | = |S1 | = |S2 | = |T2 | = 1.

Further 𝑠2
•:• 𝑢2. |T2 | = 1 justifies 𝑡2

•:• 𝑣2. That suffices for (S2, T2, ps) •:• ::•:• (U2,V2, ps′).
▶ poison-slh Then, 𝑖 = slh𝑎›sc, T1 •:• V1, and S1 •:• U1. Further S2 •:• U2. Semantics yield an

appropriate V2 with T2 •:• V2. That suffices for (S2, T2, ps) •:• ::•:• (U2,V2, ps′).
▶ poison-rollback Then, T1 rb:rb T ′

1
= V1, and S1 rb:rb S′

1
= U1. Further S2 rb:rb S′

2
= U2.

Semantics yield T2 rb:rb T ′
2
= V2. That suffices for (S2, T2, P.ps) rb:rb ::rb:rb (U2,V2, P).

▶ poison-fill, poison-spill, poison-move, poison-shuffle-sfence, and poison-shuffle-slh

Not applicable due to definition of ≺, T1 ≺ S1 makes it impossible for T1 to be at a shuffle program

counter. □

Lemma 11
Proof. We do the induction step by case distinction on V1

•:𝜆 X1. Let 𝑖 = 𝑃 V1 = 𝑃 V2.

▶ slh and move Then, 𝜆 = • and there is V2

•:• X2 by definition of semantics.

▶ fill Then, 𝜆 = ld l and there is V2

•:ld l X2 by definition of semantics.

▶ spill Then, 𝜆 = st l and there is V2

•:st l X2 by definition of semantics.

▶ sfence Then, |V1 | = 1 = |V2 |. By definition, V2

•:• X2. □
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