
Theoretical Computer Science 2
Exercise Sheet 5René Maseli TU Braunschweig

Prof. Dr. Roland Meyer Summer semester 2024

Release: 06/10/2024 Due: 06/20/2024, 18:30
(Changes from 06/17/2024 are coloured red, including the addendum on page 3.)
Hand in your answers to the Vips directory of the Stud.IP course until wednesday, 20.06.2024
11:59 pm. You should provide your answers either directly as PDF file or as a readable scan or
photo of your handwritten notes. Submit your results as a group of four. On the front page,

state the degree programme, name, surname and student id of each member of your group.

Homework Exercise 1: Some graph problems are NL-complete… [8 points]
In the lecture youwere shown that PATH is NL-complete. The following problems related to PATH
are also NL-complete.

Accessibility with intermediate node (INTERPATH)

Given: Directed, acyclic graph G = ⟨V,→⟩, Vertices s, t, u ∈ V
Question: Is there a path in G starting in s, running through t and ending in u?

a) [4 points] Show that IREACH is NL-complete wrt. LogSpace reductions, by first proving
INTERPATH ≤log

m PATH, and then PATH ≤log
m INTERPATH.

Acyclicity (ACYC)

Given: Directed graph G = ⟨V,→⟩
Question: Is there no cycle in G?

b) [4 points] For the problem ACYCPATH, we assumed without checking, that the input graph is
acyclic. Now show, that that check for this property, ACYC, is already anNL-complete problem
(wrt. LogSpace-reductions).

Homework Exercise 2: Integer Programming [6 points]
Consider the following arithmetic problem.

Integer Programming2 (IP2)

Given: m, n ∈ N, Matrix A ∈ Z
m×n, Vector b ∈ Z

m,
where all rows of A have at most two non-zero values.

Question: Gibt es kein x ∈ {0, 1}n mit Ax ≥ b?

a) [4 points] Show IP2 ≤
log
m 2SAT, and consequentially, that IP2 ∈ NL holds.

Hint: Ax ≥ b means, that for all rows i ≤ m, the inequality Ai ⋅ x ≥ bi holds. Utilize, that + and ≥
are LogSpace-computable.

b) [2 points] Show that 2SAT ≤log
m IP2 holds, and with this, that IP2 is NL-hard resp. LogSpace-

many-one reductions.



Homework Exercise 3: Completeness in L [5 points]
Prove:

a) [4 points] Let B ∈ L be non-trivial and A be an arbitrary problem. We can show A ∈ L if, and
only if, A ≤log

m B.

b) [1 point] Every non-trivial problem A ∈ L is already L-complete with respect to LogSpace-
many-one reductions.

Exercise 4:
Enrich your collection of NL-complete problems.

Non-Emptiness of regular languages (NONEMPTY-REG)

Given: A Turing machine M.
Question: AreM regular and L(M) ≠ ∅?

a) ShowNONEMPTY-REG∈NLbydescribing theworkingsof a suitablenondeterministic decider
with logarithmic-bounded space complexity.
Hint: You may assume, that ‘M is regular’ is deterministicly logspace-computable.

b) Show that NONEMPTY-REG is NL-hard with respect to logspace many-one reductions by gi-
ving a reduction for PATH ≤log

m NONEMPTY-REG.

Infinitiy of regular languages (INF-REG)

Given: A Turing Machine M.
Question: AreM regular and L(M) infinite?

c) Show that INF-REG is NL-complete wrt. logspace many-one reductions.

Exercise 5:
Prove the following lemmas:

a) Let f, g ∶ N → N be two functions andm ≥ m′ ∈ N be numbers of tapes. If ∀x ∈ N ∶ g(x) ≤ f(x)
and NTIMEm(f) ⊆ DTIMEm′(g) hold, then we get NTIMEm(f) = coNTIMEm(f).

b) LetC bea complexity class,Rbea set of functions andA ∈ C aproblem. IfA isC-hard/complete
w.r.t R-many-one-reductions, then A is coC-hard/complete w.r.t R-many-one-reductions.

Exercise 6:
Im folgenden betrachten wir die Klassen der NL und NL-vollständigen Probleme.

a) Zeigen Sie, dass die Klasse NL unter Vereinigung, Durchschnitt, Komplement und Kleene-
Stern abgeschlossen ist.

b) Nun untersuchen Sie die Klasse der NL-harten Probleme auf Abgeschlossenheit unter diesen
Operationen.



Because it did not make it into the tutorium:

Lemma: PATH ≤log
m ACYCPATH.

Beweis:
We need f ∶ Instances(PATH) → Instances(ACYCPATH)
satisfying ⟨G, s, t⟩ ∈ PATH ⟺ f (G, s, t) ∈ ACYCPATH.
Idea: The vertices shall know their own distance from s.
To accomplish this, create ∣V∣ copies of each vertex (maximal path length): V ′ = V × {0, . . . , ∣V∣}.
Every edge increases the distance: ∀u → v ∧ 0 ≤ i < ∣V∣ ∶ ⟨u, i⟩ →′ ⟨v, i + 1⟩.
The actual length of a path to t is irrelevant: ∀0 ≤ i < ∣V∣ ∶ ⟨t, i⟩ →′ ⟨t, i + 1⟩.
f shall compute ⟨G′

, ⟨s, 0⟩, ⟨t, ∣V∣⟩⟩with G′ = ⟨V ′
,→

′⟩ .
LogSpace-computable: Iterate over all i and print the slightly-modified edges into the output
tape. In the worst case, the number of vertices and edges gets squared.

Sound: The modified graph is always acyclic, since every potential cycle had to contain at least
one edge with equal or descending i-component ⟨x, i + j⟩ →′ ⟨y, i⟩, which cannot exist by cons-
truction.

Hence ⟨G, s, t⟩ ∈ PATH ⟺ ∃ path of length k ≤ ∣V∣ in G from s to t Def. PATH

⟺ ∃ path in G′ from ⟨s, 0⟩ to ⟨t, k⟩ Construction

⟺ ∃ path in G′ from ⟨s, 0⟩ to ⟨t, ∣V∣⟩ Construction

⟺ ⟨G′
, ⟨s, 0⟩, ⟨t, ∣V∣⟩⟩ ∈ ACYCPATH Def. ACYCPATH .


