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• Boolean retrieval:

– Documents: Sets of words (index terms)

– Queries: Propositional formulas

– Result: The set of documents satisfying the query formula

– Example:

Document1 = {step, mankind, man}

Document2 = {step, China, taikonaut}

Document3 = {step, China, mountaineer}

Query = “step AND ((China AND taikonaut) OR man)”

Result = {Document1, Document2}

Previous Lecture
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Today’s Lecture

1. Fuzzy retrieval model

2. Coordination level matching

3. Vector space retrieval model

4. Recap of probability theory
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• Observation:

Not all index terms representing a document

are equally important, or equally characteristic

– Are there any synonyms to the document’s terms?

– Does a term occur more than once in the document?

• Can we assign weights to terms in documents?

• Idea:

Improve Boolean retrieval!

Describe documents by fuzzy sets of terms!

– No binary set membership, but graded membership!

– Advantage: Fuzzy (i.e. ordered!) results sets

Fuzzy Index Terms
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• Fuzzy sets:

{step, China, mountaineer}

{step/0.4, China/0.9, mountaineer/0.8}

• Open Problems:

– How to deal with fuzzy logic?

– Where to get

membership degrees from?

Fuzzy Retrieval: Open Problems
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• Developed by Lotfi Zadeh in 1965

• Possible truth values are

not just “false” (0) and “true” (1)

but any number between 0 and 1

• Designed to deal with classes whose

boundaries are not well defined

Fuzzy Logic

1

0

Degree of 

membership

100 cm 200 cm

The class “tall person”



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• How to translate Boolean operators into fuzzy logic?

– Propositional logic should be a special case

– Fuzzy operators should have “nice” properties:

commutativity, associativity, monotony, continuity, …

• Zadeh’s original operators:

– Let µ(A) denote the truth value of the variable A

– Conjunction:

µ(A ∧ B) = min{µ(A), µ(B)}

– Disjunction:

µ(A ∨ B) = max{µ(A), µ(B)}

– Negation:

µ(¬A) = 1 − µ(A)

Zadeh Operators
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• Document = {step/0.4, China/0.9, mountaineer/0.8}

• Query = “(step BUT NOT China) OR mountaineer”

• Document’s degree of query satisfaction is 0.8

Example
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• Zadeh operators indeed have “nice” properties

• But sometimes, they behave strange:

Document1 = {step/0.4, China/0.4}

Document2 = {step/0.3, China/1}

Query = “step AND China”

Result = { Document1/0.4,

Document2/0.3  }

Intuitive?
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• All documents lying on the green line

are satisfying the query equally well (degree 0.7):

Intuitive?

1

0

Term1

1
Term2

Query = “Term1 AND Term2”
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Query = “Term1 OR Term2”
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• Second problem:

Where to get fuzzy membership degrees

for index terms from?

• Obvious solution:

– A lot of work …

• Better solution:

– Take crisp bag of words representation of documents,

and convert it to a fuzzy set representation

Fuzzy Index Terms
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• Approach by Ogawa et al. (1991):

– Idea: Extend each document’s crisp sets of terms

– Each document gets assigned:

• Its crisp terms (use fuzzy degree 1)

• Additional terms being similar to these crisp terms (use degree ≤ 1)

1. Use the Jaccard index to get a notion of term similarity

2. Compute fuzzy membership degree

for each term–document pair using this similarity

Fuzzy Index Terms

{step, China, mountaineer}

{step/1, China/1, 

mountaineer/1,

alpinist/0.8, Asia/0.4}
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• Jaccard index:

– Measures which terms co-occur in the document collection

– The Jaccard index c(t, u) of the term pair (t, u) is

#documents containing both term t and term u

#documents containing at least one of term t and term u

– Also known as term-term correlation coefficient,

although it is not a correlation in the usual sense

• A usual correlation coefficient would be high,

if most documents do not contain any of the two terms

Fuzzy Index Terms
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• Jaccard index:

– Document1 = {step, man, mankind}

– Document2 = {step, man, China}

– Document3 = {step, mankind}

#documents containing both term t and term u

#documents containing at least one of term t and term u

Fuzzy Index Terms

c(t, u) step man mankind China

step 1 0.67 0.67 0.33

man 1 0.33 0.5

mankind 1 0

China 1
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• Ogawa et al. (1991) compute the fuzzy index terms

as follows:

– The fuzzy membership degree of term t with respect to 

document D (represented as crisp set of terms) is

W(D, t) = 1 − ∏  (1 − c(t, u))

– 1 − c(t, u) is the fraction of documents

containing one of term t and term u but not both

– t ∈ D implies W(D, t) = 1

– Idea: Give terms a high fuzzy membership degree

that usually occur together with the other document terms;

those terms will capture the document’s topic best

Fuzzy Index Terms

u ∈ D
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• Document1 = {step, man, mankind}

• Document2 = {step, man, China}

• Document3 = {step, mankind}

Example

W(D, t) step man mankind China

Document1 1 1 1 0.67

Document2 1 1 0.78 1

Document3 1 0.78 1 0.33

c(t, u) step man mankind China

step 1 0.67 0.67 0.33

man 1 0.33 0.5

mankind 1 0

China 1

u ∈ D

W(D, t) = 1 − ∏  (1 − c(t, u))
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• Cons:

– Computation of fuzzy membership weights

usually is difficult

• Main problem: All weights must be within [0, 1]

– Lack of intuitive query processing

• But: There are many other ways to define

fuzzy conjunction and disjunction

(using t-norms and t-conorms)

• Pros:

– Supports non-binary assignment of

index terms to documents

• It is possible to find relevant documents

that do not satisfy the query in a strict Boolean sense

– Ranked result sets

Fuzzy Retrieval Model
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• Fuzzy Logic is all about degrees of truth

• Degree of truth is absolutely true (1), absolutely false(0), 

or some intermediate truth

Fuzzy Logic’s degrees of truth

Crisp set X= group of people

𝑥1

𝑥2

𝑥3
𝑥4

𝑥𝑛𝑥5

Fuzzy subset F = group of tall people

Where F ⊆ X

?
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• Lotfi Zadeh argues that fuzzy logic is different from 

probability theory

• Zadeh defines Possibility theory; Fuzzy alternative to 

Probability

• Fuzzy logic and probability refer to different kinds of 

uncertainty

– Fuzzy logic: deals with imprecision of facts and

produce fuzzy statements (e.g. rather tall)

– Probability theory: deals with chances of 

something happening, but produces precise 

statements (e.g. tall, not tall)

Fuzzy logic vs Probability

2.5m 2m
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• Possibility is different from probability!

• Zadeh’s own example:

“Hans ate X eggs for breakfast”

The possibility of an event doesn’t mean its probablility.

Fuzzy logic vs Probability

X 1 2 3 4 5 6 7 8

Possibility 1 1 1 1 0.8 0.6 0.4 0.2

Probability 0.1 0.8 0.1 0 0 0 0 0
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Today’s Lecture

1. Fuzzy retrieval model

2. Coordination level matching

3. Vector space retrieval model

4. Recap of probability theory
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• Propositional formulas are mathematically handy,

but often hard to use for querying

“step AND ((China AND taikonaut) OR man)”

• Alternative: Bag-of-words queries

– Queries are represented as a bag of words

(“virtual documents”)

– Luhn’s idea:

Let the user sketch the document

she/he is looking for!

– Advantage: Comparing queries to documents gets simpler!

• Many successful retrieval models

are based on bag-of-words queries!

Bag-of-Words Queries
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• Coordination level matching (CLM) is

a straightforward approach to bag-of-words queries

– Idea: Documents whose index records have n different terms

in common with the query are more relevant than documents 

with n − 1 different terms held in common

• The coordination level (also called “size of overlap”)

between a query Q and a document D

is the number of terms they have in common

• How to answer a query?

1. Sort the document collection by coordination level

2. Return the head of this sorted list to the user

(say, the best 20 documents)

Coordination Level Matching
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• Document1 = {step, man, mankind}

Document2 = {step, man, China}

Document3 = {step, mankind}

• Query1 = {man, mankind}

Result:

1. Document1 (2)

2. Document2, Document3 (1)

• Query2 = {China, man, mankind}

Result:

1. Document1, Document2 (2)

2. Document3 (1)

Example
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• Spatial structure of libraries:

Topically related books

are standing side by side

• Can we transfer this principle

to information retrieval?

• Idea:

Represent documents and queries

as points in an abstract semantic space

– Measure similarity by proximity

Information Spaces

Doc1 Doc2

Doc3
Doc4

Doc5
Doc6

Query
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• The vector space model was proposed by

Gerard Salton (Salton, 1975)

• Documents and queries are represented as

point in n-dimensional real vector space ℝn,

where n is the size of the index vocabulary

– Usually, n is very large: 500,000 terms (at least)

• Each index term spans its own dimension

• Obvious first choice:

Represent documents by its incidence vectors

Vector Space Model
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• Document1 = {step, China/3}

Document2 = {step/2, China}

Document3 = {step}

Example

step

China

1

1

Document1

Document2

Document3
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• How to define similarity/proximity?

• A metric on a set X is a function d : X × X → ℝ
having the following properties:

– d(x, y) ≥ 0, for any x, y ∈ X (non-negativity)

– d(x, y) = 0   iff x = y, for any x, y ∈ X (identity)

– d(x, y) = d(y, x), for any x, y ∈ X (symmetry)

– d(x, z) ≤ d(x, y) + d(y, z), for any x, y, z ∈ X (triangle inequality)

• Example: Euclidean distance

Distance and Similarity
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• Geometric meaning of Euclidean distance:

Euclidean Distance

step

China

1

1

Document2

Document3

Document1

All documents on the circle have

a Euclidean distance of 1 from Document1
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• A similarity measure on a set X

is a function s : X × X → [0, 1] where

– s(x, y) = 1 means that x and y are maximally similar

– s(x, y) = 0 means that x and y are maximally dissimilar

• There is no general agreement on what additional 

properties a similarity measure should possess

• Example: Cosine similarity in vector spaces

s(x, y) = cos(α)

– α is the angle between these two vectors:

• The vector pointing from the origin to x

• The vector pointing from the origin to y

Similarity
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• Geometric meaning of cosine similarity:

Cosine Similarity

step

China

1

1

Document2

Document3

Document1

All documents on the line have a cosine similarity

of cos(45°) ≈ 0.71 to Document1

s(x, y) = cos(α)
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• How to compute the angle α between two vectors?

• “·” denotes the dot product (aka scalar product), i.e.

• “‖·‖” denotes the Euclidean norm (aka ℓ2-norm), i.e.

Cosine Similarity
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• Let’s assume term vectors only contain

binary term occurrences

• Then, the scalar product of the

query vector x and a document vector y is

the coordination level of x and y

Recap: Coordination Level Matching 
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• Be careful!

– The choice of distance or similarity measure

always depends on the current application!

• Different measures often behave similar, but not always …

– Low Euclidean distance implies high cosine similarity,

the converse is not true

The “Right” Measure

1

1

Document2

Document3

Document1
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• Cosine similarity does not depend on

the length of document and query vectors

• But using other measures, this might make a difference …

Normalization

step

China

1

1

Document2

Document1

Document3

Query

Using e.g. Euclidean distance,

are shorter documents more 

similar to the query than 

longer ones?
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• There are many ways to normalize

the vector representation of documents and queries

• Most popular:

– Divide each coordinate by the vector’s length,

i.e. normalize to length 1:

– Divide each coordinate by the vector’s largest coordinate:

– Divide each coordinate by the sum the vector’s coordinates:

Normalization
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• Normalization to unit vectors,

i.e. vectors of length/norm 1, is a special case:

– All documents and queries are located on the unit sphere

– The rank ordering produced for a query is the same

for Euclidean distance and cosine similarity

Normalization

step

China

1

1

Document1

Query

Document3

Document2
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• Often, longer documents cover a topic more in-depth

• Therefore, accounting for document length

might be reasonable

– There are several strategies how this can be done

– Straightforward:

1. Compute query result on normalized documents and query

2. Give long documents a small boost proportional to their length

(maybe you should apply a dampening factor to account for

extremely large documents)

– More advanced:

• Measure the effect of document length on relevance

within your current document collection

• Adjust the ranking according to these insights

Normalization



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Are there any more advanced ways of

representing documents in vector space than

just copying their bag of words representation?

• Of course!

• Luhn’s observation (1961):

Repetition of words is an indication of emphasis

– We are already exploiting this by using the bag of words model!

– The number of occurrences of a term in a document or query

is called its “term frequency”

– Notation:

tf(d, t) is the term frequency of term t in document d

Vector Representation
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• Discrimination:

– Not every term in a collection is equally important

– For example, the term “psychology” might be highly 

discriminating in a computer science corpus;

in a psychology corpus, it doesn’t carry much information

– Denote the discriminative power of a term t by disc(t)

– There are many ways to formalize discriminative power …

• General term weighting framework:

– Higher term frequency ⇒ Higher term weight

– Higher discriminative power ⇒ Higher term weight

• Term weight should be proportional to

tf(d, t) · disc(t)

Vector Representation
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• Karen Spärck Jones observed that,

from a discrimination point of view,

what we’d really like to know

is a term’s specificity

(Spärck Jones, 1972):

– In how many documents

a given term is contained?

– The term specificity is

negatively correlated with this number!

– The more specific a term is,

the larger its discriminative power is

TF-IDF
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• The number of documents containing a given term t

is called t’s document frequency, denoted by df(t)

• Karen Spärck Jones proposed

the TF-IDF term weighting scheme:

– Define the weight of term t in document d as:

– “IDF” = “inverse document frequency”

TF-IDF
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• Spärck Jones: The relationship between specificity and 

inverse document frequency is logarithmic!

• This leads to today’s most common form of TF-IDF,

as proposed by Robertson and Spärck Jones (1976):

– N is the number documents in the collection

– “+ 0.5” accounts for very frequent and very rare terms

– “N / df(t)” normalizes with respect to the collection size

TF-IDF
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• A different approach to defining disc(t) is motivated

by looking at the document collection’s structure

– Let s be some similarity measure between documents

– Let C be a collection and let N be its size

– Define savg to be the average similarity across all documents:

– Define savg, t to be the average similarity across all documents, 

after removing the vectors’ dimension corresponding to term t

– Then, a measure for term t’s discriminative power is

savg − savg, t

Term Discrimination
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savg − savg, t

• Underlying idea:

– Removing a highly discriminative term will lead to

large changes in average document similarity

– Removing a non-discriminative term will not

change the average document similarity significantly

• Computation of average similarity is expensive

but can be speeded up by heuristics

– For example, use average similarity to the average document

instead of average similarity over all document pairs

(linear runtime, instead of quadratic)

Term Discrimination
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• Salton et al. (1983) analyzed the retrieval effectiveness of 

Boolean retrieval, fuzzy retrieval, and vector space retrieval

– The table shows average precision using fixed recall,

this will be explained in detail in one of the next lectures

– Rule of thumb: The larger the number,

the more relevant documents have been retrieved

Retrieval Effectiveness

Collection MEDLARS ISI INSPEC CACM

#documents 1033 1460 12684 3204

#queries 30 35 77 52

Boolean 0.21 0.11 0.12 0.18

Fuzzy 0.24 0.10 0.13 0.16

Vector space 0.55 0.16 0.23 0.30
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• Pros:

– Simple and clear

– Intuitive querying yields high usability

– Founded on “real” document rankings,

not based on result sets

– Highly customizable and

adaptable to specific collections:

• Distance/similarity functions

• Normalization schemes

• Methods for term weighting

– High retrieval quality

– Relevance feedback possible (will be covered soon…)

Vector Space Model: Pros



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Cons:

– High-dimensional vector spaces,

specialized algorithms are required (next lectures…)

– Relies on implicit assumptions,

which do not hold in general:

• Cluster hypothesis:

“Closely associated documents tend to

be relevant with respect to the same queries”

• Independence/orthogonality assumption:

“Whether a term occurs in a document,

is independent of other terms occurring in the same document”

Vector Space Model: Cons
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• Libraries and classical IR:

– Manually define a list of suitable index terms

– Manually assign a list of index terms to each document

– Rationale:

“Effectiveness is more important than efficiency.”

• Modern IR and Web search:

– Automatically assign index terms to documents

• Every word in the document is an index term!

– Rationale:

“Efficiency is more important than effectiveness.”

Manual vs. Automatic Indexing
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• The situation around 1960:

Manual vs. Automatic Indexing

Quality of Index

(Effectiveness)

Ease of Indexing

(Efficiency)

Automatic 

Indexing

Manual 

Indexing
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• Research question:

– How can we speed up and simplify the manual indexing process,

without sacrificing quality?

Manual vs. Automatic Indexing

Quality of Index

(Effectiveness)

Ease of Indexing

(Efficiency)

Automatic 

Indexing

Manual 

Indexing
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• The Cranfield II research project (1963–1966):

– Investigate 29 novel indexing languages

• Most of them artificial and highly controlled

• But also: Simple and “natural” ones

– Find methods to evaluate IR systems

• Surprising result:

– Automatic indexing is (at least)

as good as careful manual indexing

Manual vs. Automatic Indexing
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Manual vs. Automatic Indexing

Cyril Cleverdon

(1914–1997)

“This conclusion is so controversial and

so unexpected that it is bound to throw

considerable doubt on the methods which 

have been used. [...]

A complete recheck has failed to reveal

any discrepancies. [...]

There is no other course except to attempt to 

explain the results which seem to offend 

against every canon on which we were

trained as librarians.”
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• SMART:

System for the Mechanical Analysis and Retrieval of Text

• Information retrieval system developed at

Cornell University in the 1960s

• Research group led by Gerard Salton

(born Gerhard Anton Sahlmann)

• “Gerry Salton was information retrieval”
(from: In memoriam: Gerald Salton, March 8, 1927–August 28, 1995)

• SMART has been the first implementation

of the vector space model and

relevance feedback

SMART
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• Early hardware: IBM 7094

• “A basic machine operating cycle of 2 microseconds”

SMART



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• System was under development until the mid-1990s

(up to version 11)

• The latest user interface:

# indexes the document collection
$ smart index.doc spec.file < doc_loc

# shows statistics on dictionaries, inverted files, etc
$ smprint -s spec.data rel_header file.above

# index the query collection
$ smart index.query spec.file < query

# automatic retrieval run
$ smart retrieve spec.atc

SMART
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• Early versions of SMART have been evaluated

on many test collections:

– ADI: Publications from information science reviews

– CACM: Computer science

– Cranfield collection: Publications from aeronautic reviews

– CISI: Library science

– Medlars collection: Publications from medical reviews

– Time magazine collection:

Archives of the generalist review Time in 1963

SMART
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Today’s Lecture

1. Fuzzy retrieval model

2. Coordination level matching

3. Vector space retrieval model

4. Recap of probability theory
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• Soon, we will discuss probabilistic retrieval models

• To prepare for this, we will have a quick look

at some fundamental concepts needed:

– Probability

– Statistical independence

– Conditional probability

– Bayes’ theorem

Probability Theory
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• Probability is the likelihood or chance that

something is the case or will happen

• Usually, used to describe the results of well-defined 

random experiments

• Example:

Let’s play the following game:

– Roll a 6-sided dice

– Then, roll it again

– If you roll at least 9 in total

or if your second roll is 1,

you win

– Otherwise, you lose

Probability
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• Would you play this game,

if it costs you 10€ and you can win 20€?

• What can happen?

– 6 · 6 = 36 different events

Probability

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Winning:

At least 9 in total

or second roll is 1
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• What’s the probability of rolling at least 9 in total?

Answer: 10/36 ≈ 0.28

• What’s the probability of getting 1 in the second roll?

Answer: 1/6 ≈ 0.17

• What’s the probability of

winning?

Answer: 16/36 ≈ 0.44

Probability

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12
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• Two events are independent, intuitively means that

the occurrence of one event makes it

neither more nor less probable that the other occurs

• Standard definition:

Events A and B are independent,

if and only if Pr(A and B) = Pr(A) · Pr(B)

• Questions:

– Are “3 in the first roll” and “4 in the second roll” independent?

Answer: Yes

– Are “10 in total” and “5 in the second roll” independent?

Answer: No

– Are “12 in total” and “5 in the first roll” independent?

Answer: No

Statistical Independence
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• Conditional probability is the probability of some 

event A, given the occurrence of some other event B

• What’s the probability of winning

the game, given I got 4 in the first roll?

Answer: 3/36 / 1/6 = 1/2

• What’s the probability of having had 4 in the first roll,

given I won the game?

Answer: 3/36 / 16/36 = 3/16 ≈ 0.19

Conditional Probability

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12
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• After Thomas Bayes (1702–1761)

• It says:

• What’s the probability of having had 4 in the first roll,

given I won the game?

– Pr(win | 4 in first roll) = 1/2

– Pr(win) = 16/36

– Pr(4 in first roll) = 1/6

Answer: (1/6 / 16/36) · 1/2 = 3/16 ≈ 0.19

Bayes’ Theorem
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• Pr(A) is called the prior probability of A

• Pr(A|B) is called posterior probability of A

• Idea underlying these names:

Pr(A) gets “updated” to Pr(A|B) after we observed B

Bayes’ Theorem
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• Probabilistic retrieval models

Next Lecture
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