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• Remember the query process from the first lecture:

Relevance Feedback
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• There are four main approaches to

result improvement:

– Manual modification of query (query refinement)

– Browsing / “Find similar pages”

– Faceted Search

– Relevance feedback (RF)

• Manual modification requires active user engagement

• Browsing requires a “good” clustering, which is hard

• Relevance feedback is much easier to use

• Today, we consider two examples of relevance feedback:

– RF in probabilistic retrieval (BIR)

– RF in vector space retrieval

Result Improvement
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Faceted search
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Observing user behavior during normal interaction

– Eye tracking

• Pupil dilation, eye fixation,…

– Mouse movements

– Reading time

• Spend more time on relevant results

– User’s history and queries.

– Clicks in result list

• Click on third result but no click on first or second result implies

that the first and second result are not relevant

Implicit Relevance Feedback
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• Remember the BIR retrieval model

– We had to estimate Pr(Di = 1 | D ∈ Rq):

How many relevant documents contain term i?

– We estimated it using heuristics: Choose 0.9!

• Better estimation: Exploit user feedback!

– Show the user the current retrieval result (with 0.9 estimation) 

– Let him/her label the relevant ones

– Determine the proportion of relevant documents

containing term i by counting

• Use the new estimation to return a better result set

– This process can be repeated…

RF in Probabilistic Retrieval
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Example:

Query = “jaguar”

What’s Pr(Dcar = 1 | D ∈ Rq)?

→ 1/2

RF in Probabilistic Retrieval
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jaguar car jaguar animal jaguar fastjaguar system

relevant



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Relevance feedback without asking the user? YES!

• The “manual” part of relevance feedback can

be automated

• Pseudo Relevance Feedback:

– Generate a result list for the user’s query

– Assumption:  “The top k documents are relevant!”

• Usually true if k is small

– Use this assumption for relevance feedback

– Repeat this several times…

Pseudo Relevance Feedback
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• Pros:

– Works well on average

• Cons:

– Can go horribly wrong for some queries: Topic drift!

• Example of topic drift in pseudo RF:

Query = “apple”

Pseudo Relevance Feedback

9



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• In the vector space model, relevance feedback is 

classically done using Rocchio’s algorithm (Rocchio, 1971)

• Idea:

Move the query point…

– …into the direction of relevant documents, and

– …away from nonrelevant documents

RF in the Vector Space Model
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• Theory:

– The new query should…

• …maximize cosine similarity to all relevant documents

• …minimize cosine similarity to all nonrelevant documents

– Let C be the set of documents returned to the user

– Let C+ ⊆ C be the set of documents rated as relevant

– Let C− ⊆ C be the set of documents rated as nonrelevant

– Note: C+ ∪ C− ⊊ C could be true

– Task: Find the query point q that maximizes

Rocchio’s Algorithm
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Cosine similarity
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• To keep things simple, assume that both the

query and all documents are unit vectors

– Vector length does not really matter with cosine similarity

• Then the problem becomes:

Maximize (in q)

subject to |q| = 1

• This optimization problem can be solved using

the method of Lagrange multipliers

Rocchio’s Algorithm
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• Maximize (in q)

subject to |q| = 1

• Observation underlying Lagrange multipliers:

Any maximum of the following expression (in q, λ) 

yields a maximum of the original expression:

• |q| = 1 is enforced, since otherwise no maximum exists

Rocchio’s Algorithm

13
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• How to find the maximum of this expression?

Equate all partial derivatives (wrt. q1, …, qm, λ) to zero!

– Partial derivative with respect to qj:

– Partial derivative with respect to λ:

Rocchio’s Algorithm

14
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• The first equation gives:

– Note that all possible choices for q only differ in their length

• The second equation just expresses

the “length 1” constraint

– Therefore, the choice of q having length 1 is the right one

Rocchio’s Algorithm
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• We arrive at:

• Because of the constraint |q| = 1, the optimal solution 

points in the same direction as qopt(λ) but has unit length:

• Note that qopt is a scaled version of the difference 

vector between C+’s centroid and C−’s centroid

Rocchio’s Algorithm
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Rocchio’s Algorithm
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• Problems:

– The user’s judgments are biased by the initial result set

– We cannot trust the user’s judgments ultimately

• Therefore, in practice a modified approach is used

• Idea: Modify the initial query vector!

– q0: Initial query

– α, β, γ: Weighting factors

Rocchio’s Algorithm
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Rocchio’s Algorithm
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• How to choose α, β, and γ?

– Only if we have a lot of judged documents,

we want β and γ to be larger than α

– Positive feedback usually is more valuable than

negative feedback, so set β > γ

– Reasonable values might be:

• α = 1

• β = 0.75

• γ = 0.15

Rocchio’s Algorithm
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• Pros:

– Intuitive approach to automatic query refinement

– Positive and negative feedback can be exploited

– Pseudo relevance feedback can enhance

result quality without any user interaction

• Cons:

– Requires the initial query to be “good enough”

– Relies on the cluster hypothesis:

• Relevant documents are similar

• Relevant documents are dissimilar from nonrelevant ones

– Change of results often is hard to explain to the user

Relevance Feedback: Pros and Cons

21
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Feedback and Classification

1. Relevance Feedback

2. Document Classification
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• Task:

Automatically assign a given

document to one or more

categories, based on its contents

• Typical applications in IR:

– Spam detection

– E-mail sorting (friends and family, job, study, …)

– Detection of sexually explicit content

– Domain-specific search (e.g. Google Scholar)

– Language detection

– Information filtering (standing queries)

What’s Document Classification?

23
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• General task:

Learn how to classify new documents

• Supervised document classification:

– Some external mechanism (such as human feedback) provides

a correctly classified training set of documents

(and possibly some explicit classification rules)

• Unsupervised document classification:

– No training set is available but a sample of unclassified docs

– Exploits statistical properties of the data (e.g. clustering)

• Semi-supervised document classification:

– A (usually small) training set as well as

a set of unclassified documents is available

Document Classification

24
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• We will focus on supervised classification here,

which is the most common type

• Some fundamental definitions:

– Let X be the document space

(e.g. ℝm in vector space retrieval)

– Let C = {c1, …, cr} be a fixed set of classes

(aka categories, labels)

– Let D be a set of training pairs (d, c) ∈ X × C (training set)

• Task in supervised learning:

– Using a learning algorithm, find a classification function

(aka classifier) f : X→ C, which maps documents to classes

Supervised Classification

25
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• The learning algorithm takes the training set D as 

input and returns the learned classification function f

• The quality of a learned classification function can be 

evaluated using a test set, which also consists of 

correctly labeled training pairs (d, c) ∈ X × C

• Consequently, the training and test set should be similar 

(or from the same distribution)

Supervised Classification

26

Training set D Learning algorithm Classifier f
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Example from (Manning et al., 2008):

Supervised Classification

27

f(test document) = China
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• There are several popular learning algorithms,

which we will have a look at in this and the next lecture:

– Naïve Bayes:

A simple probabilistic approach

– Rocchio:

Classes are represented by centroids

– K-nearest neighbors:

Look at the nearest neighbors of a new document to

determine class membership

– Support vector machines:

Use hyperplanes to cut the document space into slices;

each slice corresponds to a class

Supervised Classification

28
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A simple Bayesian network:

Naïve Bayes

29

C
Document is about China

S
Document contains

the word “Stuttgart”

W
Document contains

the word “wall”

B
Document contains

the word “Beijing”

Pr(C) = #C / #docs

Pr(B) = #B / #docs

Pr(B|C) = #(B and C) / #C

Pr(B|¬C) = #(B and ¬C) / #(¬C)

Pr(S) = …

Pr(S|C) = …

Pr(S|¬C) = …

Pr(W) = …

Pr(W|C) = …

Pr(W|¬C) = …

All these probabilities can be estimated from

the training set (possibly using smoothing)!

What proportion of 

all documents is 

about China?
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• Classifying a new document:

– We know whether each of the events B, S, and W occurred

– We want to find out whether event C is true

• This can be done using Bayes’ Theorem:

Naïve Bayes
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C
Document is about China

S
Document contains
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W
Document contains

the word “wall”

B
Document contains

the word “Beijing”
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• Assume that the document to be classified contains the 

word “Beijing” but neither “Stuttgart” nor “wall”

• Consequently, we want to find Pr(C | B, ¬S, ¬W)

• Bayes Theorem yields:

Naïve Bayes
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C
Document is about China

S
Document contains

the word “Stuttgart”

W
Document contains

the word “wall”
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Document contains
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• In naïve Bayes (sometimes called idiot Bayes),

statistical independence is assumed:

• How to classify a new document d?

– Estimate Pr(c | d), for any class c ∈ C

– Assign d to the class having the highest probability

Naïve Bayes

32
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• Example (from Manning et al., 2008; modified):

– Estimation for Pr(China): 3/4

– Estimation for Pr(Chinese | China): 2/3

– Estimation for Pr(Tokyo | China): 1/3

– Estimation for Pr(Japan | China): 1/3

– Estimation for Pr(¬Shanghai | China): 2/3

– Estimation for Pr(¬Beijing | China): 1/3

Naïve Bayes
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DocID Words in document Label “China”?

Training set 1 Chinese Beijing Japan Yes

2 Shanghai Yes

3 Chinese Beijing Tokyo Yes

4 Tokyo Japan No

Test set 5 Chinese Tokyo Japan ?
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• Pr(China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing)

= 3/4  ·                                           = 64/243  ≈  0.26

• Pr(¬China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing)

= 1/4 ·                                            = 0

• Since Pr(China | …) > Pr(¬China | …), let’s classify doc 5 as “China”

Naïve Bayes

34

DocID Words in document Label “China”?

Training set 1 Chinese Beijing Japan Yes

2 Shanghai Yes

3 Chinese Beijing Tokyo Yes

4 Tokyo Japan No

Test set 5 Chinese Tokyo Japan ?

2/3 · 1/3 · 1/3 · 2/3 · 1/3

1/2 · 1/2 · 1/2 · 3/4 · 1/2

0/1 · 1/1 · 1/1 · 1/1 · 1/1

1/2 · 1/2 · 1/2 · 3/4 · 1/2
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Pr(China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing) = 0.26

Pr(¬China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing) = 0

• Well, obviously, we need some smoothing here…

– For example, estimate Pr(Chinese | ¬China) by a linear blend of

– From now on, we estimate Pr(Chinese | ¬China) by 0.8· 0 + 0.2· 1/2 = 0.1

• We do the same for all other probabilities (using weights 0.8 and 0.2)

Naïve Bayes

35

DocID Words in document Label “China”?

Training set 1 Chinese Beijing Japan Yes

2 Shanghai Yes

3 Chinese Beijing Tokyo Yes

4 Tokyo Japan No

Test set 5 Chinese Tokyo Japan ?

#(“Chinese” and “¬China”)

#(“¬China”)

#(“Chinese”)

#documents
and



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Using the smoothed estimates, we get the following:

• Pr(China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing)

= 3/4  ·                                                             ≈  0.34

• Pr(¬China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing)

= 1/4 ·                                                            ≈  0.37

• Since Pr(China | …) < Pr(¬China | …), let’s classify doc 5 as “¬China”

Naïve Bayes

36

DocID Words in document Label “China”?

Training set 1 Chinese Beijing Japan Yes

2 Shanghai Yes

3 Chinese Beijing Tokyo Yes

4 Tokyo Japan No

Test set 5 Chinese Tokyo Japan ?

19/30 · 11/30 · 11/30 · 41/60 · 11/30

1/2  · 1/2  · 1/2  · 3/4   · 1/2

1/10 · 9/10 · 9/10 · 19/20 · 9/10

1/2   · 1/2  · 1/2  · 3/4  · 1/2
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Pr(China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing) ≈ 0.34

Pr(¬China | Chinese, Tokyo, Japan, ¬Shanghai, ¬Beijing) ≈ 0.37

• Why don’t these probabilities sum up to 1?

– We assumed independence but it does not hold in the data

– This is true even without smoothing

– Example:

• Pr(Chinese, Beijing | China) = 2/3

• Pr(Chinese | China) ∙ Pr(Beijing | China) = 2/3 ∙ 2/3 = 4/9 ≠ 2/3

• Conclusion: Naïve Bayes is just a heuristic, but an effective one

Naïve Bayes
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DocID Words in document Label “China”?

Training set 1 Chinese Beijing Japan Yes

2 Shanghai Yes

3 Chinese Beijing Tokyo Yes

4 Tokyo Japan No

Test set 5 Chinese Tokyo Japan ?
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Typically, when using naïve Bayes, one considers only positive events, 

that is, only probabilities of terms that actually occur in the document:

• Pr(China | Chinese, Tokyo, Japan)

= 3/4  ·                                     ≈  0.51

• Pr(¬China | Chinese, Tokyo, Japan)

= 1/4 ·                                  ≈  0.65

• Since Pr(China | …) < Pr(¬China | …), let’s classify doc 5 as “¬China”

Naïve Bayes

DocID Words in document Label “China”?

Training set 1 Chinese Beijing Japan Yes

2 Shanghai Yes

3 Chinese Beijing Tokyo Yes

4 Tokyo Japan No

Test set 5 Chinese Tokyo Japan ?

19/30 · 11/30 · 11/30

1/2  · 1/2  · 1/2

1/10 · 9/10 · 9/10

1/2   · 1/2  · 1/2
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• There are many ways to extend naïve Bayes…

• Account for number of occurrences

• Use better smoothing techniques for estimations

• Do not assume independence

• Restrict model to the “most indicative” terms

• Extend model to handle more than two classes

• …

Extensions of Naïve Bayes

39
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• Rocchio classification

– Requires a vector space representation of documents

– Divides the space into regions centered on centroids

• Rocchio relies on the contiguity hypothesis:

Rocchio

40

“Documents in the same class

form a contiguous region and

regions of different classes do not overlap”
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Example (from Manning et al., 2008):

Rocchio

41

A training set

with 3 classes:

China, UK, and Kenya

New document

to be classified
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Rocchio classification:

Rocchio

42

Compute centroids

and assign new 

documents to their 

nearest centroid

Centroid of class “UK”

These lines divide

the space into 

contiguous regions

(“Voronoi tessellation”)
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• Unlike Rocchio, k-nearest neighbor classification (kNN)

uses class boundaries based on individual documents

(instead of centroids of classes)

• Each new documents gets assigned to the

majority class of its k closest neighbors,

where k is a parameter

• For k = 1, the classes correspond to the

Voronoi tessellation of the training set

• Clearly, kNN for k > 1 is more robust than kNN for k = 1

K-Nearest Neighbors

43
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Example (from Manning et al., 2008):

K-Nearest Neighbors

44

k = 1
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• We can also weight the “votes” of the

k nearest neighbors by their cosine similarity

• The score of class c with respect to some document

to be classified d then is:

– NNk(d): The set of the k nearest neighbors of d in the training 

set

– class(d’): The class of training document d’

• Every document to be classified gets assigned to

the class having the highest score

K-Nearest Neighbors

45
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• Another very important classifier:

– Support vector machines

– Highly effective but more complicated to explain

– Next lecture…

Support Vector Machines

46
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• Each different classification algorithm comes with 

individual strengths and weaknesses

– “There ain’t no such thing as a free lunch”

• For hard classification problems,

the usual classifiers tend to be weak learners

– Weak learner = only slightly better than random guessing

• Question:

– Can a set of weak learners

create a single strong learner?

• Answer: YES!

– Boosting algorithms do the trick!

Boosting

47
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• Boosting algorithms are meta-algorithms

– Basically, a boosting algorithm is a blueprint of

how to combine a set of “real” classification algorithms to

yield a single combined (and hopefully better) classifier

Boosting

48

Base classifier 1 Base classifier 2

Base classifier 3

Boosting 

algorithm
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Boosting

• Naïve approach to boosting: Majority vote!

1. Train base classifiers independently on the training set

2. For each new object to be classified,

independently ask each base classifier and

return the answer given by the majority

• Problems:

– Does only work if the majority is right very often

– Each base algorithm cannot take advantage of

its individual strengths

– Should expert votes have the same weight as any other vote?

49
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Boosting

• Better approach: Adaptive boosting

1. Train the first base classifier on the training set

2. Check which training examples cannot be explained

by the first case classifier’s underlying model (“errors”)

3. Assign a weight to each training example

• Low weight = Example fits perfectly into the first classifier’s model

• High weight = Example fits hardly into the first classifier’s model

4. Train the second base classifier on the weighted training set

• Fitting training example with high weights is more important than

fitting those with low weights

5. Reweight as in step (3)

6. Repeat the steps (4) and (5) for all remaining base classifiers

50
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Boosting

• Adaptive boosting (continued)

– In addition, assign an importance weight to each base classifier,

depending on how many training examples fit its model

• High importance if errors occur only on training examples with low weight

• Low importance if errors occur on training examples with high weight

– How does the combined classifier work?

1. Classify the new example with each base classifier

2. Use majority vote but weight the individual classifier’s answers

by their importance weights; also incorporate each classifier’s

confidence if this information is available

– Typically, the importance weights and the weights

of the individual training examples are chosen to be balanced,

such that the weighted majority now is right very often

51
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• Why is adaptive boosting better than “pure” majority vote?

– Later weak learners focus more on those training examples

previous weak learners had problems with

– Individual weaknesses can be compensated

– Individual strengths can be exploited

Boosting

52
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• Toy example:

Boosting: Example

53

Taken from Freund/Schapire: A Tutorial on Boosting
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• Round 1:

Boosting: Example

54

Taken from Freund/Schapire: A Tutorial on Boosting

Model of classifier 1 Reweighted training data
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• Round 2:

Boosting: Example

55

Taken from Freund/Schapire: A Tutorial on Boosting

Model of classifier 2 Reweighted training data
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• Round 3:

Boosting: Example

56

Taken from Freund/Schapire: A Tutorial on Boosting

Model of classifier 3
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• Combined classifier:

Boosting: Example

57

Taken from Freund/Schapire: A Tutorial on Boosting
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• Support vector machines

• The bias–variance tradeoff (overfitting)

Next Lecture
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