
Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Institut für Informationssysteme

Technische Universität Braunschweig

Institut für Informationssysteme

Technische Universität Braunschweig

Information Retrieval and

Web Search Engines

Wolf-Tilo Balke

Muhammad Usman

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• In Boolean retrieval, queries have been evaluated using

inverted indexes (aka inverted files)

• Document collection:

– Document1 = {step, mankind}

– Document2 = {step, China}

• Inverted index:

– step: {Document1, Document2}

– mankind: {Document1}

– China: {Document2}

• Query:

– “mankind AND step”

Recap: Inverted Indexes

2

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• These keywords are used as a (possibly intermediate)

representation of each document

• Some problems we are faced with:

– “3/12/91” vs. “Mar 12, 1991” vs. “12/3/1991”

– “<h1>Document heading</h1>” vs. “Document heading”

– computer vs. computers vs. Computer vs. computer’s

– aren’t vs. are not

Indexing

3

Indexing:

“The process of assigning

keywords to each document”

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU BraunschweigInformation Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Today’s Lecture: Indexing

1. Document Preparation

2. Index Construction

3. Query Evaluation

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Document Preparation

5

Y2K Around the World

As computers all over the

world switched to 2000,

few Y2K bugs were

reported in several labs.

[…]

INPUT

DOCUMENT

DOCUMENT TEXT TOKENIZATION

y2k around the world as

computers all over the

world switched to 2000 few

y2k bugs were reported in

several labs […]

FILTRATION

y2k world computers world

switched 2000 y2k bugs

reported labs […]

STEMMING

y2k world computer world

switch 2000 y2k bug report

lab […]

y2k (2), world (2),

computer (1), switch (1),

2000 (1), bug (1), report (1),

lab (1)

DOCUMENT

REPRESENTATION

Character sequence

decoding
Document

delinearization

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Let’s assume some document has to be indexed

• First step: Getting a textual representation

• Sounds easy, but might be pretty complicated

– Many different document formats:

DOC, plain text, PDF, HTML, XLS, PPT, RTF, XML, …

1. Character Sequence Decoding

6

Y2K Around the World

As computers all over the

world switched to 2000,

few Y2K bugs were

reported in several labs.

[…]

DOCUMENT TEXT

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Many document formats can be converted into a

plain text representation (possibly with some markup

information) using special converters

• Example: pdftohtml (open source tool)

1. Character Sequence Decoding

7

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"><HTML> <HEAD> <TITLE></TITLE> </HEAD>
<BODY> Homework: Exercise 14a
 • Given a
collection, a query, and an IR system:
 –
 Collection: 20 relevant documents,180 non-relevant

Information Retrieval and
 – Found: 8
relevant documents, 10 non-relevant
 Web Search Engines

• Precision, recall, and fallout?

Lecture 8: Support Vector Machines
 8 / 18 ≈ 0.44

January 7, 2009
 8 / 20 = 0.4
 Wolf-
Tilo Balke with Joachim Selke
Institut für Informationssysteme

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• But even plain text can be problematic

• A plain text document is a sequence of bytes

• What does the following byte sequence mean?

102 195 164 104 114 116

• This depends on the character encoding

– A character encoding assigns byte sequences to characters

• It means:

– “fährt” in UTF-8

– “fÃ¤hrt” in ISO-8859-1

– “f��hrt” in ASCII

(ASCII is a 7-bit character encoding!)

1. Character Sequence Decoding

8

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Unfortunately, a text document’s character encoding

often is unknown or wrongly specified

• There are many heuristics for auto-detecting encodings:

– Coding Scheme Method:

Exclude certain encodings by looking for illegal bytes or

byte sequences, which are not defined within this encoding

– Character Distribution Method:

Use statistics to exploit the fact that in any given language,

some characters are used more often than other characters

– Two-Char Sequence Distribution Method:

Exploit statistical information about 2-grams,

i.e. look at pairs of adjacent characters

1. Character Sequence Decoding

9

Source: http://www.mozilla.org/projects/intl/UniversalCharsetDetection.html

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Sometimes, the documents to be indexed are very large

and should be split up into smaller parts

• Examples:

– E-books (large PDFs)

– E-mail collections, including attachments

(e.g. in UNIX’s mbox format)

• Again, this normally can be done using heuristics…

2. Document Delinearization

10

[…]

INPUT

DOCUMENT

DOCUMENT TEXT 1

[…]

DOCUMENT TEXT n

⋮

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Tokenization:

– Remove formatting information (e.g. HTML tags)

– Remove punctuation

– Carry out basic normalization (e.g. remove capitalization)

– Goal: Convert the text into a sequence of “tokens”

3. Tokenization

11

Y2K Around the World

As computers all over the

world switched to 2000,

few Y2K bugs were

reported in several labs.

[…]

DOCUMENT TEXT TOKENIZATION

y2k around the world as

computers all over the

world switched to 2000 few

y2k bugs were reported in

several labs […]

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Tokenization is difficult!

• Let’s tokenize the following sentence!

“Mr. O’Neill thinks that the boys’ stories about

Chile’s capital aren’t amusing.”

• One token or two?

– Hewlett-Packard

– State-of-the-art

– Data base

– San Francisco

– York University vs. New York University

3. Tokenization

12

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Identical tokens (Telephones)?

– (0531) 391 3271

– +49 531 391-3271

– 531.391.3271

• Identical tokens (Dates)?

– 4/15/99

– 15/4/99

– Apr 15, 1999

3. Tokenization

13

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Specific problems in other languages:

– This two Chinese characters can be treated as one word

meaning “monk” or as sequence of two words meaning

“and” and “still”

– How to handle compounds?

• Donaudampfschifffahrtsgesellschaftskapitänsfrau

• Lebensversicherungsgesellschaftsfachangestellter

3. Tokenization

14

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Normalization handles most of the problematic cases

• Define equivalence classes of character sequences that

get mapped to the same token

– U.S.A. and USA

– naïve and naive

• Define these classes implicitly by transformation rules

– Omit all accents

– Remove periods between two characters, where there is no

whitespace around (e.g. in U.S.A.)

– Do case folding, i.e. reduce all letters to lower case

– Maybe you need exceptions for names: windows ≠ Windows

(Not important, since users ask queries in lowercase

anyway)…

3. Tokenization

15

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Removal of stop words!

• Stop words:

Extremely common words, which are of little value in

selecting which documents match a user’s query

• Examples: a, an, and, are, as, at, be, by, for, from, has,

he, in, is, it, its, of, on, that, the, to, was, were, which, will,

with

• “to be or not to be”?

4. Filtration

16

TOKENIZATION

y2k around the world as

computers all over the

world switched to 2000 few

y2k bugs were reported in

several labs […]

FILTRATION

y2k world computers world

switched 2000 y2k bugs

reported labs […]

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• In classical IR systems, stop words have been

rigorously deleted

• But stop words are needed for phrase queries,

e.g. “King of Finland” or “As We May Think”

• For example, Google does not remove stop words:

4. Filtration

17

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A general strategy for stop words removal:

– Sort tokens by collection frequency

– Take top-k of this list as stop words

• Alternatively, use a (possibly domain-specific)

predefined stop word list

• But:

– One can handle large indexes by exploiting the

statistics of language for compression, so the cost for

including stop words is not high for modern systems

– The trend goes to smaller stop word lists,

e.g. 200–300 or even less

4. Filtration

18

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Lemmatization:

The process of grouping together the different inflected

forms of a word, e.g. walking → walk, better → good

• Stemming:

Trying to do lemmatization using crude heuristics, usually

without knowledge of the word’s context or any rules of

grammar, e.g. walking → walk, but better → better

5. Stemming

19

FILTRATION

y2k world computers world

switched 2000 y2k bugs

reported labs […]

STEMMING

y2k world computer world

switch 2000 y2k bug report

lab […]

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Of course, lemmatization would be the “right” thing

and there are software tools for this task

• But:

– “Good” lemmatization is computationally expensive

if very large document collections are to be processed

– Gains of lemmatizers over stemmers in retrieval quality

(mean average precision) are very modest for English (0–5%)

– Larger gains have been reported for other languages,

e.g. German, Spanish, and Finnish (10–30%)

• In this lecture, we will discuss only stemming

5. Stemming

20

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The most common stemmer is the Porter stemmer

(Porter, 1980)

• It is designed to fit the

characteristics of English language

– Idea: Suffixes in the English language

are mostly made up of a combination

of smaller and simpler suffixes

• How does it work?

– The algorithms runs through five steps, one by one

– In each step, several rules are applied

that change the word’s suffix

5. Stemming

21

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Some (simplified!) examples of rules used in the

Porter stemmer:

5. Stemming

22

Rule Example

SSES → SS caresses → caress

IES → I ponies → poni

S → cats → cat

ING → motoring → motor

Y → I happy → happi

ATIONAL →ATE relational → relate

FULNESS → FUL hopefulness → hopeful

ICAL → IC electrical → electric

ABLE → adjustable → adjust

ATE → activate → activ

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Some transformations made by the Porter stemmer:

5. Stemming

23

Input word Stemmed word

gen gen

gender gender

genders gender

general gener

generally gener

generals gener

generation gener

generations gener

generative gener

generosity generos

generous gener

genitive genit

genitivo genitivo

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A comparison of different stemmers:
– Sample text:

Such an analysis can reveal features that are not easily visible from the

variations in the individual genes and can lead to a picture of expression that

is more biologically transparent and accessible to interpretation

– Porter stemmer:

such an analysi can reveal featur that ar not easili visibl from the variat in the

individu gene and can lead to a pictur of express that is more biolog transpar

and access to interpret

– Lovins stemmer:

such an analys can reve featur that ar not eas vis from th vari in th individu

gen and can lead to a pictur of expres that is mor biolog transpar and acces

to interpres

– Paice stemmer:

such an analys can rev feat that are not easy vis from the vary in the individ

gen and can lead to a pict of express that is mor biolog transp and access to

interpret

5. Stemming

24

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• There are some additional things apart from stemming

that could be done during this step

• Take care of umlauts and accents

– Usually, just remove them (e.g. ä → a)

or transliterate them (e.g. ä → ae)

– But be careful: unbeschränkt ≠ unbeschrankt

• Take care of synonyms, e.g. auto → car

– Again, be very careful when doing this!

Further Normalization

25

FILTRATION

y2k world computers world

switched 2000 y2k bugs

reported labs […]

STEMMING

y2k world computer world

switch 2000 y2k bug report

lab […]

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Finally, we arrive at the bag-of-words representation

• The preparation of original documents is finished now,

but we need to talk about efficient data structures

for managing the inverted indexes…

6. Document Representation

26

STEMMING

y2k world computer world

switch 2000 y2k bug report

lab […]

y2k (2), world (2),

computer (1), switch (1),

2000 (1), bug (1), report (1),

lab (1)

DOCUMENT

REPRESENTATION

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Preparing Documents

27

• Preparing documents is particularly problematic

– A lot of information is encoded in figures

– Text references figures and figures may contain tabular data

– Names (e.g. of substances) implicitly contain structural information

• PDF (portable document format)

– The standard for exchanging digital documents

• ISO 15930, 19005, 24517, 32000 etc.

– Documents are collections of objects

(characters, vector-based graphics, bitmap images, ...)

– Objects are positioned by absolute coordinates

– Non-digital documents, scanned or photographed

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Preparing Documents

28

• The preparation process (for PDFs):

– Extracting text

– Recognize entities, relations within text,

tables, and figures

– Derive structural data from named entities

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• PDF-to-text converters are of no help

– Only extract the text objects from PDF

– pdftotext, PDFBox, PDFExtractor, PDFTextStream

• Screen reader and OCR software

– Input can be arbitrary → bitmap images

– Tries to find regions, lines, words, and characters in the image

Solution: Extraction Tools?

29

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• “Perfect” documents can

be processed easily

– Single column,

well-structured

– Direct output of the

authoring or

production process

– Or converted from

other digital formats

(XML, Word, LaTeX, ...)

– Not much markup

• The only problem:

segmentation!

The Perfect Document

30

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Segmentation

31

Textual

output

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Problematic documents:

– Compound documents

(pictures + text)

– Complex layouts

(magazines, journals)

– Complex markup

(math + chemical formulas)

• Already a lot of problems!

More Problematic Sources

32

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig 33

Table with figure

of a reaction

2a–i: Correspond to

entities explained

elsewhere

Figure with a

reference to one

special step in

the table above

(2c)

“Basic” reaction

scheme

Long chemical

entity names

(row span)

References to entities

mentioned in the table

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Markup

34

3. Suppose there are two events, x and y, in question with m possibilities for

the ï¬•rst and n for the second. Let pi j be the probability of the joint

occurrence of i for the ï¬•rst and j for the second. The entropy of the joint

event is H x y = , âˆ‘ pi j log pi j

i; j

while H x = , âˆ‘ pi j log âˆ‘ pi j H y = , âˆ‘ pi j log âˆ‘ pi j

i; j i i; j

j

It is easily shown that

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Scanned or photographed

documents with a

rich structure

– ... in bad quality

• Can only be processed

with OCR software

– Usually, a lot of errors

The Ultimate Horror

35

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU BraunschweigInformation Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Today’s Lecture: Indexing

1. Document Preparation

2. Index Construction

3. Query Evaluation

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Building an inverted index looks easy:

1. Assign an ID to each document: docID

2. Run the document preparation process on each document

3. Compile a list of all index terms

4. Assign an ID to each index term: termID

5. Create a list of all (termID, docID, tf) triplets

6. Sort this list: Primarily by termID, secondarily by docID

• Essentially, this corresponds to a

matrix transposition

• Let’s have a look at an example…

Index Construction

37

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Our example collection of six documents:

1. The old night keeper keeps the keep in the town

2. In the big old house in the big old gown

3. The house in the town had the big old keep

4. Where the old night keeper never did sleep

5. The night keeper keeps the keep in the night

6. And keeps in the dark and sleeps in the light

• Case-folding, stopping, and stemming reduces

the vocabulary to ten index terms:

Example

38

1. big

2. dark

3. gown

4. house

5. keep

6. light

7. night

8. old

9. sleep

10. town

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Then, we get the following (termID, docID, tf) triplets:

(5, 1, 3), (7, 1, 1), (8, 1, 1), (10, 1, 1), (1, 2, 2), (3, 2, 1), (4, 2, 1),

(8, 2, 2), (1, 3, 1), (4, 3, 1), (5, 3, 1), (8, 3, 1), (10, 3, 1), (5, 4, 1),

(7, 4, 1), (8, 4, 1), (9, 4, 1), (5, 5, 3), (7, 5, 2), (2, 6, 1), (5, 6, 1),

(6, 6, 1), (9, 6, 1)

Example

39

tf 1 2 3 4 5 6 7 8 9 10

1 3 1 1 1

2 2 1 1 2

3 1 1 1 1 1

4 1 1 1 1

5 3 2

6 1 1 1 1

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

(5, 1, 3), (7, 1, 1), (8, 1, 1), (10, 1, 1), (1, 2, 2), (3, 2, 1), (4, 2, 1),

(8, 2, 2), (1, 3, 1), (4, 3, 1), (5, 3, 1), (8, 3, 1), (10, 3, 1), (5, 4, 1),

(7, 4, 1), (8, 4, 1), (9, 4, 1), (5, 5, 3), (7, 5, 2), (2, 6, 1), (5, 6, 1),

(6, 6, 1), (9, 6, 1)

• Now, sort: Primarily by termID, secondarily by docID

(1, 2, 2), (1, 3, 1), (2, 6, 1), (3, 2, 1), (4, 2, 1), (4, 3, 1), (5, 1, 3),

(5, 3, 1), (5, 4, 1), (5, 5, 3), (5, 6, 1), (6, 6, 1), (7, 1, 1), (7, 4, 1),

(7, 5, 2), (8, 1, 1), (8, 2, 2), (8, 3, 1), (8, 4, 1), (9, 4, 1), (9, 6, 1),

(10, 1, 1), (10, 3, 1)

Example

40

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

(1, 2, 2), (1, 3, 1), (2, 6, 1), (3, 2, 1), (4, 2, 1), (4, 3, 1), (5, 1, 3),

(5, 3, 1), (5, 4, 1), (5, 5, 3), (5, 6, 1), (6, 6, 1), (7, 1, 1), (7, 4, 1),

(7, 5, 2), (8, 1, 1), (8, 2, 2), (8, 3, 1), (8, 4, 1), (9, 4, 1), (9, 6, 1),

(10, 1, 1), (10, 3, 1)

• The inverted index:

Example

41

Term Posting List

1: big (2, 2), (3, 1)

2: dark (6, 1)

3: gown (2, 1)

4: house (2, 1), (3, 1)

5: keep (1, 3), (3, 1), (4, 1), (5, 3), (6, 1)

6: light (6, 1)

7: night (1, 1), (4, 1), (5, 2)

8: old (1, 1), (2, 2), (3, 1), (4, 1)

9: sleep (4, 1), (6, 1)

10: town (1, 1), (3, 1)

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Building the inverted index isn’t difficult

if the whole document collection fits in main memory

• Now, let’s get serious:

Typical collections are very large…

• What can we do?

– Sort-based inversion:

Use a external (i.e. disk-based) sorting algorithm that

works on compressed disk blocks (for performance reasons)

– Merge-based inversion:

Read and index documents in memory until a fixed capacity is

exceeded; when memory is full, the index is flushed to disk and

merged with the index already stored on disk

Large Collections

42

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Merge-Based Inversion

43

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Merge-based indexing has several advantages:

• It is practical for collections of all sizes

• It even scales well and operates effectively in

as little as 100 MB of main memory

• Disk space overheads can be restricted to

a small fraction of the final index

• With clever data compression methods,

the number of merge runs can be reduced further

Merge-Based Inversion

44

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The problem of building the index essentially is solved

– OK, Google uses massive replication and data distribution

but these are very special requirements…

• Now, how to store an inverted index on disk?

• Since disk accesses are very expensive (e.g. compared to

computations), there are two major requirements:

• Since computational power comes at (almost) no cost,

effective data compression is our first way to go!

Index Representations

45

Keep the index as small as possible!

Read as little data as possible from disk!

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A simple implementation of an inverted index:

– Use 32-bit integers for document identifiers

– Use 16-bit integers for term frequencies

• Then, the posting list for term “keep” will be

stored on disk like this:

Index Representations

46

Term Posting List

…

5: keep (1, 3), (3, 1), (4, 1), (5, 3), (6, 1)

…

1 3 3 1 4 1 5 3 6 1

32 bit 16 bit

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A typical inverted index:

– Some document IDs occur very frequently in the whole index

– Most document IDs occur very rarely

• Here, fixed-width integers are not space-efficient

• Furthermore, fixed-width integers limit the number of

documents that can be stored…

• Variable-length codes solve both problems

– They can encode arbitrary large numbers

– They can be constructed to store small values with little

storage cost, at the expense of large values

– This perfectly fits our needs if document with many index

entries get small IDs

Index Representations

47

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The simplest variable-bit infinite code is unary

– Represent the integer x > 0 as

x − 1 “1” bits followed by a terminating “0” bit

– Example: Encode 12 by the bit sequence 111111111110

• Another variable-bit code is Elias’ gamma code:

– To store the integer x > 0, it is factored into 2a + b,

where a = ⌊log2(x)⌋ and 0 ≤ b < 2a

– The codeword is formed as the concatenation of a + 1

represented in unary and b represented in fixed-width binary of

width a

– Example: Encode 12 = 23 + 4 as 1110100

Variable-Length Codes

48

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Some more examples:

Variable-Length Codes

49

Value Unary Gamma

1 0 0

2 10 100

3 110 101

4 1110 11000

5 11110 11001

6 111110 11010

10 1111111110 1110010

100 … 1111110100100

1000 … 1111111110111101000

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The efficiency of each code depends on

the distribution of input numbers to be encoded

• The unary code allows optimal space efficiency if the

input distribution is given by Pr(x) = 2−x

– Half of all values are the number 1

– A quarter are 2

– …

• The gamma code is optimal for Pr(x) ≈ 1 / (2x2)

• Of course, there are many other codes available…

Variable-Length Codes

50

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Using gamma coding, our example posting list becomes:

• 28 bit (compared to 240 using a fixed-length encoding)

Variable-Length Codes

51

Term Posting List

…

5: keep (1, 3), (3, 1), (4, 1), (5, 3), (6, 1)

…

1 3 3 1 4 1 5 3 6 1

1 bit 3 bit 3 bit 1 bit 5 bit 1 bit 5 bit 3 bit 5 bit 1 bit

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• To allow even better compression ratios,

we can store gaps instead of document IDs:

• Gaps usually are much smaller than document IDs…

Storing Gaps

52

Term Posting List

…

5: keep (1, 3), (3, 1), (4, 1), (5, 3), (6, 1)

…

Term Posting List (with Gaps)

…

5: keep (1, 3), (2, 1), (1, 1), (1, 3), (1, 1)

…

+2 +1 +1 +1

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• What do we get?

• 16 bit (compared to 28 and 240, respectively)

• Using gap storage, even large posting lists can be stored

efficiently, which enables us to abstain from stop words

Storing Gaps

53

Term Posting List (with Gaps)

…

5: keep (1, 3), (2, 1), (1, 1), (1, 3), (1, 1)

…

1 3 2 1 1 1 1 3 1 1

1 bit 3 bit 3 bit 1 bit 1 bit 1 bit 1 bit 3 bit 1 bit 1 bit

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• We already have seen that compression can help us a lot

• Now: How to reduce the number of disk accesses?

• As we have seen in Boolean retrieval,

an important operation is intersecting posting lists

– Inverted index:

• step: {Document1, Document2}

• mankind: {Document1}

• China: {Document2}

– Query:

• “mankind AND step”

• How to speed up this operation?

Skip Lists

54

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Another example:

When trying to answer the query “keep AND light,” we

have to scan through the two posting lists shown above

– Problem: We have to scan the whole posting list of “keep”

to finally reach document 6; we know that we can ignore

every document having a smaller ID than 6

– Is there any way to skip some of these postings?

Skip Lists

55

Term Posting List (no Gaps)

…

5: keep (1, 3), (3, 1), (4, 1), (5, 3), (6, 1)

6: light (6, 1)

…

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Idea: Skip Lists

– Evenly spaced, add some skip pointers to the list

– Every skip pointer consists of a number of bits that can be

skipped to reach a different entry

– This skipped entries do not have to be accessed from disk

• Our gamma-coded posting list (no gaps) with

skip pointers that allow skipping every other entry:

Note that in addition to this we need some coding mechanism to

indicate whether an entry contains a skip pointer or not…

Skip Lists

56

1 3 3 1 4 1 5 3 6 1

1 bit 3 bit 3 bit 1 bit 5 bit 1 bit 5 bit 3 bit 5 bit 1 bit

10 14

10 bit 14 bit

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Skip lists can speed up intersection operations

massively if the posting lists are sorted by

document ID

• Where to place skip pointers?

– A heuristic says that they should be placed

every sqrt(k) postings if k is the number of list entries…

Skip Lists

57

1 3 3 1 4 1 5 3 6 1

1 bit 3 bit 3 bit 1 bit 5 bit 1 bit 5 bit 3 bit 5 bit 1 bit

10 14

10 bit 14 bit

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• How to handle changes to document collection?

– New documents

– Updated documents

– Deleted documents

• Simple (but inefficient) solution:

Rebuild the index from scratch

• Better solution:

Keep an auxiliary in-memory index that keeps track

of all changes

– If the auxiliary index gets too large,

it is merged with the main index

Dynamic Indexing

58

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU BraunschweigInformation Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Today’s Lecture: Indexing

1. Document Preparation

2. Index Construction

3. Query Evaluation

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Boolean retrieval:

Process queries as we already have discussed it

• Vector space retrieval:

Answer the query “dark, keep, night” by scanning

through the postings lists for “dark,” “night,” and “keep,”

while accumulating scores for each document

– Let’s have a look at an example…

Query Processing

60

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Query = “dark keep night”

• Vector representation: Simple term frequencies

– Query vector = (0, 1, 0, 0, 1, 0, 1, 0, 0, 0)

• Similarity measure:

Simple scalar product

• Process query by scanning though the three lists and

add up term frequencies for each occurring document

• This gives the following final scores:

Vector Space Retrieval

61

Term Posting List

2: dark (6, 1)

5: keep (1, 3), (3, 1), (4, 1), (5, 3), (6, 1)

7: night (1, 1), (4, 1), (5, 2)

Doc 1 Doc 2 Doc 3 Doc 4 Doc 5 Doc 6

3 + 1 = 4 0 1 1 + 1 = 2 3 + 2 = 5 1 + 1 = 2

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Due to the nature of the scalar product, we only need to

add up scores for any non-zero query component

• To support more advanced vector representations,

simply add some more information to the posting lists

– For example, to support TF–IDF, store each term’s IDF at

the beginning of its corresponding posting list

• Furthermore, we can avoid reading all affected posting

lists completely, by sorting the postings by their TF

– This yields a significant speed-up of query processing

• Similar approaches can be used to process

queries for other retrieval models…

Vector Space Retrieval

62

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

The complete retrieval process:

Query Processing

63

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A special type of queries are phrase queries

• Example: “King of Finland”

• Three strategies to process phrase queries:

– Postprocessing:

Initially, ignore the word order and do Boolean retrieval;

In a second step, search through the documents found and

return only the ones containing the phrase

– Store word positions:

Add word positions to each posting so that the locations of

terms in documents can be checked during query evaluation

– Partial phrase indexes:

Create a (partial) index containing phrases

Phrase Queries

64

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The three strategies complement each other and

usually are applied in combination

– Create a phrase index for phrases containing frequent words

(phrases containing rare words can be found easily by

using the other two approaches)

– Store word positions for every word and phrase

(can be done efficiently using compression)

– If for some reason there are postings without word positions,

postprocess all document founds by doing a phrase search

Phrase Queries

65

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Latent Semantic Indexing

Next Lecture

66

	Slide 1: Information Retrieval and Web Search Engines
	Slide 2: Recap: Inverted Indexes
	Slide 3: Indexing
	Slide 4: Today’s Lecture: Indexing
	Slide 5: Document Preparation
	Slide 6: 1. Character Sequence Decoding
	Slide 7: 1. Character Sequence Decoding
	Slide 8: 1. Character Sequence Decoding
	Slide 9: 1. Character Sequence Decoding
	Slide 10: 2. Document Delinearization
	Slide 11: 3. Tokenization
	Slide 12: 3. Tokenization
	Slide 13: 3. Tokenization
	Slide 14: 3. Tokenization
	Slide 15: 3. Tokenization
	Slide 16: 4. Filtration
	Slide 17: 4. Filtration
	Slide 18: 4. Filtration
	Slide 19: 5. Stemming
	Slide 20: 5. Stemming
	Slide 21: 5. Stemming
	Slide 22: 5. Stemming
	Slide 23: 5. Stemming
	Slide 24: 5. Stemming
	Slide 25: Further Normalization
	Slide 26: 6. Document Representation
	Slide 27: Preparing Documents
	Slide 28: Preparing Documents
	Slide 29: Solution: Extraction Tools?
	Slide 30: The Perfect Document
	Slide 31: Segmentation
	Slide 32: More Problematic Sources
	Slide 33
	Slide 34: Markup
	Slide 35: The Ultimate Horror
	Slide 36: Today’s Lecture: Indexing
	Slide 37: Index Construction
	Slide 38: Example
	Slide 39: Example
	Slide 40: Example
	Slide 41: Example
	Slide 42: Large Collections
	Slide 43: Merge-Based Inversion
	Slide 44: Merge-Based Inversion
	Slide 45: Index Representations
	Slide 46: Index Representations
	Slide 47: Index Representations
	Slide 48: Variable-Length Codes
	Slide 49: Variable-Length Codes
	Slide 50: Variable-Length Codes
	Slide 51: Variable-Length Codes
	Slide 52: Storing Gaps
	Slide 53: Storing Gaps
	Slide 54: Skip Lists
	Slide 55: Skip Lists
	Slide 56: Skip Lists
	Slide 57: Skip Lists
	Slide 58: Dynamic Indexing
	Slide 59: Today’s Lecture: Indexing
	Slide 60: Query Processing
	Slide 61: Vector Space Retrieval
	Slide 62: Vector Space Retrieval
	Slide 63: Query Processing
	Slide 64: Phrase Queries
	Slide 65: Phrase Queries
	Slide 66: Next Lecture

