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A typical Web search engine:

An Overview of Web Retrieval

The Web

Users

Web crawler

User interface

Retrieval 

algorithmsBusiness

 model
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Networks of social interactions are formed…

– Between academics by co-authoring

– Between movie personnel by directing and acting

Social Networks
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– Between musicians, soccer stars, friends, and relatives

– Between countries via trading relations

Social Networks
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– Between people making phone calls

– Between people transmitting infections

Social Networks
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– Between scientific papers through citations

– And, of course, between Web pages through links…

Social Networks
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• It has been quite common for decades to model

social networks using directed graphs:

Models of Social Networks

1 2

4 3

A 1 2 3 4

1 0 1 0 1

2 1 0 0 0

3 0 0 0 1

4 1 1 0 0

Directed graph Adjacency matrix
Ai, j = 1

if and only if

node i links to node j
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Classical research questions:

– Which authors have a high prestige (or status)?

– Which countries are well-connected, which are isolated?

– Which people connect different communities?

Models of Social Networks
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• Using the graph model, it has been clear that

in-degree is a good first-order indicator of prestige

• In 1949, the sociologist John R. Seeley realized the 

recursive nature of prestige in a social network

– A person’s status is a function of the status of those who choose him

– And their status is a function of those who choose them

– And so ad infinitum…

The Recursive Nature of Prestige
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• Seeley modeled prestige as follows:

– Every node u has a notion of prestige p(u) associated with it, 

which is simply a positive real number

– Recursive constraint:

The prestige of each node u should be proportional to

the total sum of prestige of all nodes that link to u, i.e.

– Over all nodes, we represent the prestige score as

a real column vector p having exactly one entry for each node

– Equivalent fixpoint condition:

           p = 𝛼 · AT · p
• Task: Find numbers p and 𝛼 such that the condition holds

• This approach fits well to ideas from linear algebra (later)

A Model of Prestige
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Example:

Solution:

p = (0.65, 0.65, 0, 0.4)

𝛼 = 0.62

A Model of Prestige

p = 𝛼 · AT · p 

1 2

4 3

A 1 2 3 4

1 0 1 0 1

2 1 0 0 0

3 0 0 0 1

4 1 1 0 0

AT 1 2 3 4

1 0 1 0 1

2 1 0 0 1

3 0 0 0 0

4 1 0 1 0
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• Another interesting notion is centrality

• Definitions:

– The distance d(u, v) between two nodes u and v in

a directed graph is the smallest number of links via

which one can go from u to v

– The radius of a node u is r(u) = maxv d(u, v),

i.e., the distance to u’s most distant node

– The center of the graph is arg minu r(u),

i.e., the node that has the smallest radius

Centrality

13



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The scientific citation graph:

– Link a paper u to a paper v, i.e. set u → v, if u is cited by v

– Papers having a small radius are likely to be very influential

• The scientific collaboration graph:

– Link two authors u and v, i.e. set u ↔ v,

if they co-authored a paper

– The Erdős number of an author u is

his/her distance to

the famous mathematician Paul Erdős

Centrality
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There are many other notions of centrality, e.g., cuts:

– A cut is a (usually small) number of edges that, when removed, 

disconnect a given pair of vertices

– One may look for a small set of vertices that, when removed, 

will decompose the graph into two or more connected 

components

– This is useful for the study of epidemics, espionage, or 

suspected terrorist communication on telephone networks

Centrality
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• Another important measure is co-citation

– If document u cites documents v and w,

then v and w are said to be co-cited by u

• If documents v and w are co-cited by many documents, 

then v and w are somehow related to each other

• In terms of the adjacency matrix A:

– Link a document u to a paper v, i.e. set u → v, if u cites v

– The number of documents co-citing v and w is the entry 

corresponding to v and w in the matrix ATA:

Co-Citation
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• The entry in the ATA matrix corresponding to [v, w] is

the co-citation index of v and w and

a measure of relatedness between v and w

• One may use this pairwise relatedness measure in a 

clustering algorithm, such as multidimensional scaling

• MDS is similar to the singular value decomposition

• It uses a similarity matrix to embed the documents into 

a low-dimensional Euclidean space (e.g. a plane)

• Visualizing clusters based on co-citation reveals 

important social structures between and

within link communities

Co-Citation
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(Boyack et al., 2005) visualized similarity data based on co-citations 

created from over 1 million journal articles published in 2000:

Co-Citation

Each point

represents

a journal
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• Classical IR:

– The worth of a document with regard to a query is

intrinsic to the document

– Documents are self-contained units, and

are generally descriptive and truthful about their contents

• Modern Web search:

– Apply ideas from network analysis to the Web graph…

– Links are recommendations

– Anchor texts can be used as document descriptions

Back to the Web
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Assumption 1:

A hyperlink is signal of quality or popular interest

– In some sense, a link is a democratic vote

Back to the Web
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Assumption 2:

The anchor text of a link (or its surrounding text) 

describes the target page

Back to the Web

Excerpt from

Yahoo! Directory

IBM’s home page

(does not contain the term computer!)
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• Both assumptions clearly do not hold always

• But exploiting them has proved to be much better

than not exploiting them

• We will concentrate on the first assumption:

“Links are quality signals”

• Two highly popular algorithms:

– PageRank (Page et al., 1998)

– HITS (Kleinberg, 1999)

Link Analysis
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• PageRank

– Developed around the fall of 1996 at Stanford University

by Larry Page and Sergey Brin, the founders of Google

– Idea: Assign a query-independent measure of prestige to

each Web resource

• HITS

– Developed at the same time at IBM Almaden Research Center 

by Jon Kleinberg, a famous computer scientist

– Idea: For any given query, assign two measures to each Web 

resource, a hub score and an authority score

• Hub: A compilation of links to relevant Web resources

• Authority: A resource that is relevant in itself

PageRank and HITS
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Before 1993:

– There are no search engines…

• Archie (ftp indexing) at McGill University

– Tim Berners-Lee maintains a list of Web servers:

– In Germany: LEO, “Link Everything Online”  at TU Munich

History of Web Search
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1993–1998:

– Many new search engines, most popular:

Lycos, AltaVista, Excite, Inktomi, HotBot, Ask Jeeves

– All of them mainly rely on classical IR techniques and

focus on the problem of scaling

1998:

– Google is founded

– The first engine that heavily exploits the Web’s link structure

– Google’s success has a name: PageRank

1998–Today:

– Large companies try to keep up with Google

– Most noteworthy: Yahoo and Microsoft

Brief History of Web Search
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The next big thing in Web search?

– Clustering?

– Natural language query processing?

– The “Semantic Web”?  e.g. Knowledge Graph

Brief History of Web Search
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– Artificial Intelligence (AI) e.g. RankBrain from Google

The next big thing…

“top level of the food 

chain”

– Something else?
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1. Link Structures

2. PageRank

3. HITS

Link Analysis



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Problem:

– How to assign a query-independent measure of prestige

to each Web resource?

• A good but infeasible solution:

– Rank Web resources by their popularity (measured by traffic?)

• The PageRank solution:

– Apply John R. Seeley’s model of prestige to the Web graph!

– The number of in-links is correlated to a resource’s prestige

– Links from good resources should count more than

links from bad ones

PageRank
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Imagine a Web surfer doing a random walk on the Web:

• 90% of the time, the surfer clicks a random hyperlink

• 10% of the time, the surfer types in a random URI

• PageRank = The long-term visit rate of each node

This is a crude, but useful, Web surfing model

• No one chooses links with equal probability,

surfing usually is topic-driven

• How to surf to a random page?

• What about the back button or bookmarks?

The Random Surfer Model
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A more detailed version of the model:

1. Start at a random page, chosen uniformly

2. Flip a coin that shows “tails” with probability 𝜆

3. If the coin shows “heads”

AND the current page has a positive out-degree:

– Randomly follow one of the pages out-links

– Continue at (2)

 If the coin shows “tails”

OR the current page has no out-links:

– Surf to a random Web page, chosen uniformly

– Continue at (2)

The Random Surfer Model
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Example:

The Random Surfer Model

A 1 2 3 4 5

1 1

2 1

3 1

4 1 1

5 1 1 1

Adjacency matrix:

T 1 2 3 4 5

1 0.05 0.05 0.05 0.05 0.75 + 0.05

2 0.75 + 0.05 0.05 0.05 0.05 0.05

3 0.05 0.75 + 0.05 0.05 0.05 0.05

4 0.375 + 0.05 0.05 0.375 + 0.05 0.05 0.05

5 0.05 0.25 + 0.05 0.25 + 0.05 0.25 + 0.05 0.05

Transition matrix:

Set 𝜆 = 0.25

1 2

4 3

5
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Example (continued):

• If the surfer is at page 3 in step t

– He/she will be at page 1 in step t + 1 with a probability of 5%

– He/she will be at page 2 in step t + 1 with a probability of 80%

– He/she will be at page 3 in step t + 1 with a probability of 5%

– He/she will be at page 4 in step t + 1 with a probability of 5%

– He/she will be at page 5 in step t + 1 with a probability of 5%

The Random Surfer Model

Transition matrix:
1 2

4 3

5

T 1 2 3 4 5

1 0.05 0.05 0.05 0.05 0.8

2 0.8 0.05 0.05 0.05 0.05

3 0.05 0.8 0.05 0.05 0.05

4 0.425 0.05 0.425 0.05 0.05

5 0.05 0.3 0.3 0.3 0.05
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Example (continued):

• Let’s do a simulation

• If we start in state 1,

what’s the probability of

being in state i after t steps?

The Random Surfer Model

1 2 3 4 5

t = 0 1 0 0 0 0

t = 1 0.05 0.05 0.05 0.05 0.8

t = 2 0.11 0.29 0.27 0.25 0.09

t = 3 0.36 0.27 0.17 0.07 0.13

t = 4 0.28 0.21 0.11 0.08 0.32

t = 5 0.24 0.21 0.16 0.13 0.26

t = 6 0.26 0.24 0.16 0.12 0.23

t = 7 0.27 0.23 0.15 0.11 0.24

t = 8 0.26 0.22 0.15 0.11 0.25

t = 9 0.26 0.23 0.15 0.11 0.25

The probability 

vector seems to 

converge…

1 2

4 3

5
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• And indeed, the probability vector converges

as t goes to infinity, for any initial probability vector

• To make this point clear, we need some linear algebra 

and some theory of stochastic processes

• Definitions:

– Let n denote the number of nodes

– A probability vector is an n-dimensional vector such that

(a) all entries are non-negative and

(b) the sum of entries is 1

– A stochastic matrix is an n × n matrix such that

(a) all entries are non-negative and

(b) the sum of each row is 1

Convergence
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• Stochastic matrices are closely related to

Markov chains:

– A Markov chain consists of

n states and an n × n stochastic matrix T

– Each row and column of T corresponds to a state, respectively

– At any point in time, the Markov chain is

in exactly one of these states

– Time is discrete, i.e. it runs in discrete steps: t = 0, 1, 2, …

– From time step to time step, the chain’s current state changes 

according to the stochastic matrix T:

Pr(state v at time t + 1 | state u at time t) = T[u, v]

Convergence

u v
T[u, v]
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• In essence, a Markov chain is a

probabilistic finite state machine

• Knowledge about the current state of a Markov chain

can be expressed by probability vectors of length n

• Remember our example:

– Knowing for sure that the current state of the chain is state u,

can be expressed by a probability vector that is 1 at u’s place

– For example, (0.2, 0.5, 0.3) means that the chain’s probability to 

be in the first, second, and third state is 20%, 50%, and 30%, 

respectively

Convergence
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• State transitions can be formalized using

matrix–vector multiplication

• Let T be a transition matrix and p a probability vector 

that models the chain’s state probabilities at time t

• What are the state probabilities p’ at time t + 1?

• Example (n = 2):

Convergence

1 2

T2, 1

T1, 2

T2, 2T1, 1

p = (p1, p2)

p’ = (p1’, p2’)

p1’ = T1, 1 · p1 + T2, 1 · p2

p2’ = T1, 2 · p1 + T2, 2 · p2
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• Now we have everything we need to talk about

convergence properties of the Markov chain

• Let p0 be some initial probability state vector

• Let pt denote the probability state vector at time t

• Then, for any t, we have pt + 1 = TT · pt

• Clearly, convergence of pt as t → ∞ means that

pt converges to a vector p such that

p = TT · p

• Well, what we are looking for is an eigenvector of TT 

corresponding to the eigenvalue 1

Convergence
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• According to the Perron–Frobenius theorem

from linear algebra the following is true:

– Every stochastic matrix containing only positive entries

has 1 as one of its eigenvalues

– Furthermore, 1 is the largest eigenvalue of the matrix

– There is only one eigenvector having the eigenvalue 1

• Since we do a random teleport with probability 𝜆 > 0

in the random surfer model, the theorem applies

• Therefore, we can be sure that there is

a probability vector p satisfying p = TT · p

• Such a vector p is called the Markov chain’s

stationary probability vector 

Convergence
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• In the random surfer model there is

a unique stationary probability vector p

• Node u’s PageRank is its stationary probability p[u]

• This fits Seeley’s notion of prestige:

PageRank

1 2 3 4 5

t = 0 1 0 0 0 0

t = 1 0.05 0.05 0.05 0.05 0.8

t = 2 0.11 0.29 0.27 0.25 0.09

t = 3 0.36 0.27 0.17 0.07 0.13

…

t → ∞ 0.26 0.23 0.15 0.11 0.25

1 2

4 3

5
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• PageRank was invented by Larry Page at Stanford

• PageRank is patented as US patent 6,285,999

– “Method for node ranking in a linked database”

• The method for computing the PageRank and related stuff are patented!

– Patent was assigned to Stanford University (not to Google)

– Google has exclusive license rights

– Stanford received 1.8 million shares in Google

in exchange for use of the patent

– These shares were sold in 2005 for 336 million dollars

PageRank
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PageRank

Result list sorted using IR methodsResult list sorted by PageRank

Query:

“university”

43



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

A Web graph:

Which of the following node lists is ordered by PageRank?

a) E > B = D > A = C

b) B = E = D > A = C

PageRank Quiz

A B

C D

E

c) E > D > B = A > C

d) D > E > A = C > B
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• How to compute the PageRank?

• A very simple method for eigenvalue and eigenvector 

computation is the so-called power iteration, which

can be applied to any quadratic matrix A:

1. Start with an arbitrary initial vector b0

2. Set i = 0

3. Set bi + 1 = A · bi

4. Set bi + 1 = bi + 1 / |bi + 1|, i.e. normalize bi + 1 to unit length

5. Set i = i + 1

6. GOTO 3

PageRank Computation
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• One can prove that the power iteration converges to 

the eigenvector of A having the largest eigenvalue

• In our case, the largest eigenvalue is 1

– The power iteration finds the stationary probability vector p

• How many iterations

are needed?

– Actually, the number

is quite low since we

don’t need a perfect

result anyway…

PageRank Computation
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• How to compute the PageRank for a Web graph 

containing 60 billion nodes?

– Use a highly scalable distributed algorithm

– Actually, this is one of Google’s secrets…

PageRank Computation

47



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A search engine myth:

“PageRank is the most important component of ranking”

• The reality:

– There are several components that are at least as important:

Anchor text, phrases, proximity, …

– Google uses hundreds of different features for ranking

– There are rumors that PageRank in its original form

(as presented here) has a negligible effect on ranking

– However, variants of PageRank are

still an essential part of ranking

– Addressing link spam is difficult and crucial!

Importance of PageRank
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• A disadvantage of PageRank is that it computes only a 

single overall score for each web resource

– A web resource might be unimportant from a global view

but highly important for a specific topic

• Topic-sensitive PageRank tries to address this issue:

– Define a set of popular topics (e.g. football, Windows, Obama)

– Use classification algorithms to assign each Web resource to 

one (or more) of these topics

– For each topic, compute a topic-sensitive PageRank by 

limiting the random teleports to pages of the current topic

– At query time, detect the query’s topics and

use the corresponding PageRank scores…

Topic-Sensitive PageRank

49



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Example (query: bicycling):

Topic-Sensitive PageRank
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Comparison to PageRank (precision at 10):

Topic-Sensitive PageRank
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• Eliminate navigational links:

– Most web pages contain navigational structures

– The quality assumption does only hold

if a hyperlink was created as a result of editorial judgment

– Therefore, navigational links should be removed

before computing the PageRank

• Eliminate nepotistic links:

– Nepotism = favoritism based on kinship

– Links between pages authored by the same person

also are problematic

– Again, they should be removed before doing any computations

– Unfortunately, it’s much harder to detect them

than detecting navigational links…

Possible Enhancements
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1. Link Structures

2. PageRank

3. HITS

Link Analysis
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• HITS stands for

hyperlink induced topic search

• Invented by Jon Kleinberg

• Problem setting:

– For any information need,

there are hubs and authorities

• Authority: Definitive high-quality information (query-dependent!)

• Hub: Comprehensive lists of links to authorities (query-dependent!)

– To a certain degree, each page is a hub as well as an authority

• Task:

– Given a query, estimate the degree of

authority and hubness of each Web page

HITS
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• Obvious:

The authority and hubness scores are query-dependent, 

therefore the computation has to be done at query time

• Idea:

– Given: A query q

– Send q to a standard IR system to collect

a root set R of nodes in the Web graph

– Collect the base set Vq of nodes, which includes R as well as

all nodes that are connected to R by an in-link or out-link

    Root set

HITS
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• Idea (continued):

– Finally, compute hub and authority scores on the base set

• Hubs and authority scores are defined similar to prestige:

– Let A be the base set’s adjacency matrix

– Denote the nodes’ hub scores by a vector h and

their authority scores by a vector a

– A recursive definition of h and a:

– Again, 𝛼 and 𝛽 are proportionality constants

– The authority score of a page is proportional to

the sum of hub scores of the pages linking to it

– The hub score of a page is proportional to

the sum of authority scores of the pages to which it links

HITS
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• By combining both equations we arrive at:

• As we see:

– The authority vector a is an eigenvector of ATA

– The hub vector h is an eigenvector of AAT

• Kleinberg decided to take the principal eigenvectors 

in each case, i.e. the eigenvectors corresponding to

the eigenvalues with the highest absolute values

• Again, they can be computed using the power iteration

HITS
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Example (query: japan elementary schools):

HITS

58



Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• As PageRank, HITS has been patented:

– US patent 6,112,202

– “Method and system for identifying authoritative information 

resources in an environment with content-based links between 

information resources”

– Inventor: Jon Kleinberg

– Assignee: IBM

HITS
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• There is a direct mapping between finding the

singular value decomposition of A and

finding an eigen-decomposition of ATA and AAT

• A short recap from Lecture 4:

– Let A = USV be the SVD of A

– Theorem:

U’s columns are the eigenvectors of AAT,

the matrix S2 contains the corresponding eigenvalues

– Similarly, V’s rows are the eigenvectors of ATA,

S2 again contains the eigenvalues

• Therefore, HITS is equivalent to running the SVD on

the adjacency matrix of the base set

Connection to LSI/SVD
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• If the query is ambiguous (e.g. “Java” or “jaguar”)

or polarized (e.g. “abortion” or “cold fusion”),

the base set will contain a few, almost disconnected,

link communities

• Then, the principal eigenvectors found by HITS will

reveal hubs and authorities in the largest link community

• One can tease of this structure by computing not only 

the principal eigenvectors but some more

Extensions
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• PageRank can be precomputed,

HITS has to be computed at query time

– HITS is very expensive

• Different choices regarding the formal model

– HITS models hubs and authorities

– HITS uses a subset of the Web graph

– But: We could also apply PageRank to a subset

and HITS on the whole Web graph…

• On the Web, a good hub usually is also a good authority

• The difference between HITS and PageRank

is not that large…

HITS vs. PageRank
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• Spam detection

• Metasearch

• Privacy issues

Next Lecture
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