
Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Institut für Informationssysteme

Technische Universität Braunschweig

Institut für Informationssysteme

Technische Universität Braunschweig

Information Retrieval and

Web Search Engines

Wolf-Tilo Balke

Muhammad Usman

Lecture 11: Web Crawling

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

A typical Web search engine:

Overview of Web Retrieval

2

The Web

Users

Web crawler
Indexer

User interface

Retrieval

algorithmsBusiness

 model

Today’s topic

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Web Crawling

1. How the Web Works

2. Web Crawling

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

The Web

4

The World Wide Web

=

Resources + hyperlinks

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Web Resources are uniquely identified by

Uniform Resource Identifiers (URIs):

Web Resources

5

foo://example.com:8042/over/there?name=ferret#nose

Scheme Authority Path Query
Fragment

Most common:

HTTP, the Hypertext Transfer Protocol

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Typical HTTP URIs look like this:

HTTP

6

http://www.google.com/search?q=ifis

Host Absolute path

Query

http://en.wikipedia.org/wiki/New_South_Wales#History

Fragment

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• In HTTP, every URI has a normalized form

• Normalization affects:

– (Un)quoting of special characters (e.g. %7E represents ~)

– Case normalization (i.e. transform the hostname to lowercase)

– Remove the default port (HTTP’s default port is 80)

– Remove path segments “.” and “..”

– …

Normalized URIs

7

http://abc.COM:80/~smith/home.html
http://ABC.com/%7Esmith/home.html
http://ABC.com:/%7Esmith/home.html?
http://abc.com:/~smith/../~smith/home.html?
http://ABC.com/././~smith/home.html

http://abc.com/~smith/home.html

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• HTTP is a request/response standard between

a client and a server

• HTTP works on top of TCP/IP

– Servers are identified by IP addresses (e.g. 134.169.32.171)

– Hostnames are mapped to IP adresses using

the Domain Name System (DNS)

– There is a many-to-many relationship between

IP addresses and hostnames

How Does HTTP Work?

8

(1) Client sends request

(2) Server sends response

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• TCP/IP is based on IP addresses

• Therefore: When some client want to contact the host

www.google.com, it has to look up the host’s IP

address first

How Does HTTP Work?

9

DNS server

Web server

Client

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• How do HTTP requests look like?

• Example: http://www.google.com/search?q=ifis

HTTP request:

GET /search?q=ifis HTTP/1.1[CRLF]

Host: www.google.com[CRLF]

Connection: close[CRLF]

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)[CRLF]

Accept-Encoding: gzip[CRLF]

Accept-Charset: ISO-8859-1,UTF-8;q=0.7,*;q=0.7[CRLF]

Cache-Control: no[CRLF]

Accept-Language: de,en;q=0.7,en-us;q=0.3[CRLF]

[CRLF]

How Does HTTP Work?

10

Carriage return

followed by line feed

“GET” request method

Name of resource

Hostname (since there could be different

hosts having the same IP address)

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Matching HTTP response of www.google.com:

HTTP/1.1 200 OK[CRLF]

Cache-Control: private, max-age=0[CRLF]

Date: Tue, 27 Jan 2009 10:03:57 GMT[CRLF]

Expires: -1[CRLF]

Content-Type: text/html; charset=UTF-8[CRLF]

Server: gws[CRLF]

Transfer-Encoding: chunked[CRLF]

[CRLF]

<!doctype html><head><meta http-equiv=content-type content="text/html;
charset=UTF-8"><title>ifis - Google
Search</title><script></script><style>
[…]

How Does HTTP Work?

11

Status code

(200 means

“resource found”)

Some information

related to caching

MIME type of this resource

The resource itself

H
e
a
d

e
r

B
o

d
y

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Important types of HTTP requests are:

– GET:

Requests a representation of the specified resource

– HEAD:

Asks for the response identical to the one that would

correspond to a GET request, but without the response body

(useful to determine whether the resource has changed)

– POST:

Submits data to be processed (e.g., from an HTML form) to

the identified resource, which may result in the creation of a

new resource or the updates of existing resources or both

How Does HTTP Work?

12

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Important types of HTTP status codes are:

– 200 (OK): Standard response for successful HTTP requests

– 301 (Moved Permanently): This and all future requests

should be directed to a given URI

– 302 (Found / Moved Temporarily): Only this request

should be directed to a given URI

– 304 (Not Modified): The resource has not been modified

since last requested

– 404 (Not Found): The requested resource could not be found

(but may be available again in the future)

– 410 (Gone): The resource requested is no longer available

(will not be available again)

How Does HTTP Work?

13

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• What we have learned:

– How Web resources are identified (URIs)

– How Web resources can be retrieved (HTTP)

• What’s still missing: How do resources look like?

• Most web resources are of MIME type text/html,

i.e. they are text documents written using HTML

• HTML stands for

Hypertext Markup Language

• HTML was invented by

Tim Berners-Lee in 1991

HTML

14

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• HTML is a markup language, i.e., it provides means to

describe the structure of text-based information in

a document

• In HTML you can denote certain text as…

– Headings:
<h1>Main heading</h1> <h2>Sub Heading</h2>

– Paragraphs:
<p>Some text...</p>

– Lists:
First itemSecond item

– Links:
Link to Google

– …

HTML

15

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<html>

<body>

<h1>Main Heading</h1>

<p>Some text</p>

<p>

Next paragraph containing a

link.

</p>

<h2>Sub heading</h2>

<p>Some list:</p>

Item 1Item 2

<p>Again, some text</p>

</body>

</html>

HTML

16

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Currently, HTML is available in many different versions:

– 1995: HTML 2.0 (based on SGML)

– 1997: HTML 3.2

– 1997: HTML 4.0

– 1999: HTML 4.01

– 2000: “ISO HTML”

– 2000: XHTML 1.0 (based on XML)

– 2001: XHTML 1.1

– HTML 5

HTML

17

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Before 1989

– Hypertext and the Internet are separate, unconnected ideas

• 1989

– Tim Berners-Lee is working at CERN, Geneva

– Researchers from around the world needed to share data,

– “a large hypertext database with typed links” proposal

– Implementing on a NeXT workstation

The Beginnings of the Web

18

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Berners-Lee’s NeXTcube:

• 25 MHz CPU, 8 MB–64 MB RAM

The Beginnings of the Web

19

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• 1990

– CERN computer scientist Robert Cailliau joins

Berners-Lee’s vision and rewrites the proposal

– Both present their idea at the European Conference on

Hypertext Technology but find no vendors who support them

– The name World Wide Web is born

– By Christmas 1990, all tools for a working Web have been

created by Berners-Lee:

• HTML

• HTTP

• A Web server software: CERN httpd

• A Website: http://info.cern.ch

• A Web browser/editor: WorldWideWeb (runs only on NeXT)

The Beginnings of the Web

20

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

The first Web browser:

The Beginnings of the Web

21

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• 1991

– Nicola Pellow creates a simple text browser that

could run on almost any computer

– To encourage use within CERN, they put the CERN

telephone directory on the Web, which previously was

located on a mainframe

– Berners-Lee announces the Web in the alt.hypertext

newsgroup:

“The WorldWideWeb (WWW) project aims to allow all links

to be made to any information anywhere. [...] The WWW

project was started to allow high energy physicists to share

data, news, and documentation. We are very interested in

spreading the web to other areas, and having gateway servers

for other data. Collaborators welcome!”

The Beginnings of the Web

22

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• 1993

– The Web spreads around the world

– The graphical Web browser Mosaic is developed by a team at

the National Center for Supercomputing Applications (NCSA)

at the University of Illinois at Urbana-Champaign; the team is

led by the later founder of Netscape, Marc Andreessen

• 1994

– Netscape is founded

– Mosaic becomes the Netscape Navigator

– The World Wide Web Consortium (W3C) is founded by

Berners-Lee at the Massachusetts Institute of Technology with

support from the Defense Advanced Research Projects Agency

(DARPA) and the European Commission

The Beginnings of the Web

23

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Web Crawling

1. How the Web Works

2. Web Crawling

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A basic crawler (aka robot, bot, spider) consists of:

– A queue of URIs to be visited

– A method to retrieve Web resources and process HTTP data

– A page parser to extract links from retrieved resources

– A connection to the search engine’s indexer

• The basic mode of operation:

1. Initialize the queue with URIs of known seed pages

2. Take URI from queue

3. Retrieve and parse page

4. Extract URIs from page

5. Add new URIs to queue

6. GOTO (2)

A Basic Crawler

25

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The Web is large: 60 billion pages (more or less…)

• Let’s assume we want to crawl each page once a year

• How many pages do we have to crawl per second then?

– 60,000,000,000 pages per year

– 5,000,000,000 pages per month

– 166,666,667 pages per day

– 6,944,444 pages per hour

– 115,740 pages per minute

– 1929 pages per second

• Well, it seems like we need a highly scalable crawler…

Problem Size

26

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Apart from scalability,

there are further issues

• How to detect spam pages?

• How to detect duplicates or pages already seen?

• How to avoid spider traps?

• We need many machines, how do we distribute?

• How to handle latency problems?

• How to limit the used bandwidth?

• How deep should we crawl sites?

• How to comply with the site owner’s wishes?

Further Complications

27

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Robustness

– Golden rule:

For every crawling problem you can (or cannot) think of,

there will be a Web page exhibiting this problem

– Web pages, URLs, HTTP responses,

and network traffic as such can be

malformed and might crash your software

– Therefore, use very robust software

– “Very robust” usually means non-standard

– Robustness also refers to the ability to

avoid spider traps

MUST-Have Features

28

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Politeness

– Web site owner’s usually have to pay for their Web traffic

– Do not generate unnecessarily high traffic!

– Do not slow down other people’s servers by “hammering,”

i.e., keep the number of requests per time unit low!

– Obey explicit crawling policies set by site owners

(e.g. robots.txt)!

MUST-Have Features

29

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• The robot exclusion standard

– Exclude some resources from access by robots,

and thus from indexing by search engines

– Put a file named robots.txt in your domain’s top-level

directory (e.g. http://en.wikipedia.org/robots.txt),

which specifies what resources crawlers are allowed to access

– Caution: This “standard” is not a standard in the usual sense,

it’s purely advisory!

• Examples:

– Allow all robots to view all files:

User-agent: *
Disallow:

Robot Exclusion Standard

30

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

– User-agent: Specifies the name of the robot or group of

robots the rule applies to.

– Disallow: Indicates the URLs that should not be crawled or

indexed by the specified user-agent.

– Allow: Overrides previous disallow rules to allow specific URLs

for the specified user-agent.

– Request-rate: Sets the maximum number of requests per

second a robot can make to the website.

– Crawl-delay: Specifies the minimum delay in seconds between

successive requests from the same robot.

– Sitemap: Informs search engines about the location of the

XML sitemap for the website.

Key components

31

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Examples:

– Keep all robots out:
User-agent: *
Disallow: /

– Exclude certain resources:
User-agent: *
Disallow: /cgi-bin/
Disallow: /private/

– Exclude a specific bot:
User-agent: BadBot
Disallow: /private/

– Limit the number of requests per second:
Request-rate: 1/5

– Recommend a visit time interval (in GMT):
Visit-time: 0600-0845

Robot Exclusion Standard

32

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

A look at http://www.wikipedia.org/robots.txt:

#

robots.txt for http://www.wikipedia.org/ and friends

#

Please note: There are a lot of pages on this site, and there are

some misbehaved spiders out there that go _way_ too fast. If you're

irresponsible, your access to the site may be blocked.

#

advertising-related bots:

User-agent: Mediapartners-Google*

Disallow: /

Wikipedia work bots:

User-agent: IsraBot

Disallow:

Robot Exclusion Standard

33

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Distributed:

– The crawler should have the ability to execute in

a distributed fashion across multiple machines

• Scalable:

– The crawler architecture should permit scaling up

the crawl rate by adding extra machines and bandwidth

• Performance and efficiency:

– The crawl system should make efficient use of various system

resources including processor, storage, and network bandwidth

• Quality:

– The crawler should be biased towards fetching “useful” pages

first and updating them more often than “useless” ones

SHOULD-Have Features

34

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Freshness:

– The crawler should operate in continuous mode,

i.e. it should obtain fresh copies of previously fetched pages

– Crawl a page with a frequency that approximates

the rate of change of that page

– Be able to update a given set of pages on demand,

e.g. if there is some current highly popular topic (“World Cup”)

• Extensible:

– Be able to cope with new data formats, new protocols, …

– This amounts to having a modular architecture

SHOULD-Have Features

35

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Anatomy of a Large-Scale Crawler

36

DNS handler

Local

URI queue

Resource

parser and

URI extractor

Repository

and index

Duplicate

content

checker
Text indexing

and other

analyses

Resource

fetcher

Handles e.g. robots.txt

Distributes work

URI

approval

guard

Crawl

statisticsLoad monitor

and work-thread

manager

Persistent

URL pool

Duplicate

URI

checker

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Fetching DNS information usually is slow due to

network latency and the need to query

many servers in parallel

• The DNS handler is a customized local DNS component

– Prefetches DNS information that will be needed by

some work-thread in the near future

– Uses a relaxed policy regarding DNS updates,

i.e., break the DNS standard to avoid unnecessary DNS queries

The DNS Handler

37

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Task:

– Find out whether a given URI is contained in the URI pool

– But: As quick as possible!

• Problems:

– Doing string comparisons with all pool URIs is too expensive

– Even using index structures does not help much here

since string operations as such are very expensive

• Solution:

– Use fingerprints!

The Duplicate URI Checker

38

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Fingerprinting

– First, only use URIs in their normalized forms

• This reduces the number of different URIs that must be handled

– Then, for any normalized URI, compute its hash value

(aka fingerprint) with respect to some hash function

– A popular hash function is MD5, which can be

computed quickly and yields a 128-bit fingerprint

– Example of MD5: http://www.ifis.cs.tu-bs.de becomes

75924e8d184c52dd9bc5b368361093a8 (hexadecimal)

• Now, build a B-tree (or hash table) of all fingerprints

containing pointers to the original URIs

The Duplicate URI Checker

39

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

A B-tree:

• B-trees can be searched efficiently

• Numerical comparisons can be done quickly

The Duplicate URI Checker

40

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

The whole process:

The Duplicate URI Checker

41

It’s a new URI

Do the matching fingerprints

originate from the same URI strings?

YES NO

Is the given URIs fingerprint contained in the B-tree?

YES

It’s a known URI

NO

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Problem size?

– Let’s say we have collected 1 billion URIs

– Each URI’s fingerprint requires at least 16 bytes

– To store 1 billion URIs, we need about 15 GB of storage

– Plus much more space to store URI strings and metadata

• There are two options of storage:

– A distributed main memory index

– Put it on disk

• In both cases, it would be reasonable to

enforce some locality by grouping URIs together

that usually will be accessed in quick succession

The Duplicate URI Checker

42

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• How to enforce locality?

• Observation: URIs having the same hostname are

usually accessed together in crawling

• Idea: Take two fingerprints per URI

– One for the hostname

– One for the rest

– Concatenate both to form a URI’s fingerprint

• Then, URIs of the same hostname are located in

the same sub-tree of the index

The Duplicate URI Checker

43

57c6caa6d66b0d64f9147075a219215f

http://en.wikipedia.org/wiki/New_South_Wales

c4b591806d11a2ffa9b81c92348eeaf9

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• In principle, we could check for duplicate content

in the same way as we did it for duplicate URIs

• But what about this page?

• Or, think of pages with ads that change on every visit

The Duplicate Content Checker

44

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• This problem is called near-duplicate detection

• First step: Focus on content!

– Remove all styling information from the Web resource

– Convert the resource into a text-only view

– Drop textual information like navigation structures

– Drop images and dynamic content

The Duplicate Content Checker

45

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Example:

The Duplicate Content Checker

46

Institute for Information

Systems

The Institute for Information

Systems at Technische

Universität Braunschweig,

Germany, focuses on research

and teaching in the area of

databases and information

systems.

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• After this step, the problem amounts to near-duplicate

detection on plain text documents (word sequences)

• It can be solved using a technique called shingling

– Given: A positive number k and a sequence of terms d

– Definition: The k-shingles of d are the set of

all consecutive sequences of k terms in d

• Example:

– d = “a rose is a rose is a rose”

– k = 4 (a typical value used in the near-duplicate detection of Web pages)

– The 4-shingles of d are:

 “a rose is a” “rose is a rose” “is a rose is”

The Duplicate Content Checker

47

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Intuitive idea: Two documents are near-duplicates if

the two sets of shingles generated from them are

nearly the same

• A more precise definition:

Let d and d’ be documents and let S(d) and S(d’) be

their respective sets of shingles

• Remember the Jaccard coefficient from fuzzy retrieval

• We use it to measure the overlap between the sets:

• Define d and d’ to be near-duplicates if J(…) is “large,”

e.g. larger than 0.9

The Duplicate Content Checker

48

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Computing the value of J(S(d), S(d’)) directly is easy

• Complexity is O(n log n)

– Sort each set of shingles

– Find intersection and union by merging the two sorted lists

• However, the typical situation is different:

– We already have a large document collection

– We want to check whether a new document is a near-duplicate

– Compare the new document with all existing ones?

• Too expensive, we need some clever indexing technique…

The Duplicate Content Checker

49

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• A very clever indexing technique (to be discussed later)

relies on a randomized approximation algorithm

for computing J(S(d), S(d’))

• To explain this algorithm, we need the following:

– Map every shingle into a hash value over a large space,

say the space of all 64-bit integers

– Let H(d) be the set of hash values derived from S(d)

– Then, it is J(S(d), S(d’)) ≈ J(H(d), H(d’))

The Duplicate Content Checker

50

H(d)S(d)
Apply hash

function to

each shingle

Set of shingles Set of hash values

(64-bit integers)

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

– Let π be a random permutation on the set of all

64-bit integers, i.e. π is a one-to-one function that

maps any 64-bit integer to some 64-bit integer

• The simplest permutation is the identity mapping

(every 64-bit number is mapped to itself)

• Another example of a permutation is π(x) = (x + 1) mod 264

• Here, “random” means chosen at random according to

the uniform distribution over the set of all permutations

on the set of all 64-bit integers

– When applying a single permutation π to each hash value in H(d),

we get a new set of 64-bit numbers Π(d)

– Furthermore, let min(Π(d)) be the smallest number in Π(d)

The Duplicate Content Checker

51

H(d)S(d)
Apply hash

function to

each shingle

Set of shingles Set of hash values

(64-bit integers)

Π(d)
Apply

permutation π Set of numbers

(64-bit integers)

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Illustration:

The Duplicate Content Checker

52

a rose is a rose is a rose

a rose is a rose is a rose is a rose is

d =

S(d) = {

H(d) = { 57892145 110457815 9235647

2002547458 698458 8398774125Π(d) = {

min Π(d)

, , }

, , }

, , }

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Then, the following is true, for any documents d and d’:

– Intuitive meaning: The overlap between the sets of shingles

(measured by the Jaccard coefficient) is same as the probability that

their corresponding hash sets have the same smallest number when

permuted randomly

• This identity will allow us to build an indexing schema that

supports efficient near-duplicate detection for new documents

• How to prove this identity?

The Duplicate Content Checker

53

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Given:

– S(d) and S(d’): The sets of shingles

– H(d) and H(d’): The sets of corresponding hash values

– π: A random permutation on the set of 64-bit integers

• Random = Chosen uniformly over the set of all permutations on the 64-bit numbers

– Π(d) and Π(d’): The result of applying π to H(d) and H(d’)

– min(Π(d)) and min(Π(d’)): The minima in Π(d) and Π(d’)

• Note that π, Π(d), Π(d’), min(Π(d)), and min(Π(d’)) are random

• We have to prove the following:

The Duplicate Content Checker

54

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

We have to prove the following:

Proof:

– First, represent the sets H(d) and H(d’) as bit strings of length 264, where

the i-th bit is set if number i is contained in H(d) or H(d’), respectively

– The permutation π corresponds to a random swapping of columns,

resulting in bit strings Π(d) and Π(d’)

The Duplicate Content Checker

0 1 2 3 4 5 … 264 − 3 264 − 2 264 − 1

H(d) 0 1 1 0 1 0 … 0 1 1

H(d’) 1 0 1 0 1 1 … 0 0 1

Example: H(d) = {1, 2, 4, …, 264 − 2, 264 − 1} H(d’) = {0, 2, 4, 5, …, 264 − 1}

0 1 2 3 4 5 … 264 − 3 264 − 2 264 − 1

Π(d) 0 1 0 1 0 1 … 1 1 0

Π(d’) 0 1 1 0 1 1 … 1 0 0

55

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Proof (continued):

– min(Π(d)) and min(Π(d’)) are the positions of the first “1” columns

– Pr(min(Π(d)) = min(Π(d’))) is the probability that

Π(d) and Π(d’) have their first “1” column at the same position

• What’s the probability that both Π(d) and Π(d’) have

their first “1” column at the same position?

– Since “0–0” columns can be ignored, it’s the same as the probability

that the first non-“0–0” column is a “1–1” column

• Therefore:
– Pr(min(Π(d)) = min(Π(d’))) = Pr(the first non-“0–0” column is a “1–1” column)

The Duplicate Content Checker

56

0 1 2 3 4 5 … 264 − 3 264 − 2 264 − 1

Π(d) 0 1 0 1 0 1 … 1 1 0

Π(d’) 0 1 1 0 1 1 … 1 0 0

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Proof (continued):

• What’s Pr(the first non-“0–0” column is a “1–1” column)?

– Since Π is uniformly distributed over all permutations of columns:

– This is exactly the definition of the Jaccard coefficient!

• QED

The Duplicate Content Checker

57

0 1 2 3 4 5 … 264 − 3 264 − 2 264 − 1

Π(d) 0 1 0 1 0 1 … 1 1 0

Π(d’) 0 1 1 0 1 1 … 1 0 0

Pr(the first non-“0–0” column is a “1–1” column) =
number of “1–1” columns

number of non-“0–0” columns

Pr(min(Π(d)) = min(Π(d’))) = Pr(the first non-“0–0” column is a “1–1” column)

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• That’s great!

– We can estimate the overlap between H(d) and H(d’) by

applying random permutations and comparing the minima

• Estimate Pr(min(Π(d)) = min(Π(d’))) by drawing random samples

• The literature says that 200 is a good number of

random permutations/samples to use in practice

– Therefore, let π1, π2, …, π200 be a fixed(!) set of permutations,

which has been generated randomly

– Let 𝜓(d) = (min(Π1(d)), min(Π2(d)), …, min(Π200(d)))

– 𝜓(d) is called the sketch of d

– Then, the Jaccard coefficient of H(d) and H(d’) can be estimated

by counting the number of places in which 𝜓(d) and 𝜓(d’) agree

– Since J(H(d), H(d’)) and J(S(d), S(d’)) usually are very similar,

we finally arrived at a method for estimating J(S(d), S(d’))

The Duplicate Content Checker

58

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

The Duplicate Content Checker

59

Document d Document d’

Shingles: S(d) Shingles: S(d’)

200 fixed

permutations

1 hash function

The number of equal places (between 0 and 200)

Divide it by 200 and get an approximation of J(S(d), S(d’))

Π1(d) Π200(d)…

Hashes: H(d)

Π1(d’) Π200(d’)

Hashes: H(d’)

…

min Π1(d) … …min Π200(d) min Π200(d’)min Π1(d’)

Sketch: 𝜓(d) Sketch: 𝜓(d’)

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Now back to our initial problem:

– Given:

• A large collection of documents (and their pre-computed sketches)

• A new document dnew

– Near-duplicates of dnew can be found by computing the

sketch of dnew and comparing to the sketches of all existing docs

– This is much faster than computing shingles and their overlap

• But:

– Finding near-duplicates is still quite expensive if we have

to compare the sketch of every new document to all the

sketches of the documents that already have been indexed

– Linear complexity in the size of the index… Bad!

The Duplicate Content Checker

60

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Again, there is a trick:

– For each indexed document d and each entry 𝜓i(d) of its sketch

𝜓(d), create a pair (𝜓i(d), id(d)), where id(d) is d’s document id

– If n is the number of documents, we get 200 · n pairs in total

– Finally, create a B-tree index that is sorted by the 𝜓i(d)s

– Then, for each new document d, we can scan through its sketch

and look up all other documents having at least one number in

common—only these have to checked in detail…

The Duplicate Content Checker

61

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

The Duplicate Content Checker

62

New document d
The set of all indexed

documents d’ such that

𝜓1(d) ∈ 𝜓(d’)

The set of all indexed

documents d’ such that

𝜓2(d) ∈ 𝜓(d’)

The set of all indexed

documents d’ such that

𝜓200(d) ∈ 𝜓(d’)

…

Its sketch: 𝜓(d)

Use the B-tree to find all

indexed documents whose

sketch contains at least one

of 𝜓1(d), 𝜓2(d), …, or 𝜓200(d)

Only these

documents’

sketches can

have a

non-zero

overlap with

d’s sketch

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Extension:

– If we consider two documents to be near-duplicates if

their sketches have at least m matching places, we restrict our

search to all documents in the B-tree which have at least m

numbers in common

– The set of all these documents can be found by intersecting

the sets of documents having at least 1 number in common

The Duplicate Content Checker

63

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Now, assume that you own a Web search engine that

focuses on a specific topic, e.g. sports

– Then, it would be reasonable to do some kind of

“focused crawling” to avoid crawling unrelated pages

• How to do it?

– Train a classifier that is able to detect whether

a web page is about the relevant topic

– Start crawling with a hand-crafted set of highly on-topic pages

– When crawling, only follow out-links of on-topic pages

• Possible extension:

– For any yet unseen page, estimate the probability that

this page is on-topic using a clever model

– Do the crawl in order of descending probabilities

Focused Crawling

64

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

Comparison to unfocused crawling:

Focused Crawling

65

Information Retrieval and Web Search Engines – Wolf-Tilo Balke – Institut für Informationssysteme – TU Braunschweig

• Exploiting the Web graph for ranking

– HITS

– PageRank

Next Lecture

66

	Slide 1: Information Retrieval and Web Search Engines
	Slide 2: Overview of Web Retrieval
	Slide 3: Web Crawling
	Slide 4: The Web
	Slide 5: Web Resources
	Slide 6: HTTP
	Slide 7: Normalized URIs
	Slide 8: How Does HTTP Work?
	Slide 9: How Does HTTP Work?
	Slide 10: How Does HTTP Work?
	Slide 11: How Does HTTP Work?
	Slide 12: How Does HTTP Work?
	Slide 13: How Does HTTP Work?
	Slide 14: HTML
	Slide 15: HTML
	Slide 16: HTML
	Slide 17: HTML
	Slide 18: The Beginnings of the Web
	Slide 19: The Beginnings of the Web
	Slide 20: The Beginnings of the Web
	Slide 21: The Beginnings of the Web
	Slide 22: The Beginnings of the Web
	Slide 23: The Beginnings of the Web
	Slide 24: Web Crawling
	Slide 25: A Basic Crawler
	Slide 26: Problem Size
	Slide 27: Further Complications
	Slide 28: MUST-Have Features
	Slide 29: MUST-Have Features
	Slide 30: Robot Exclusion Standard
	Slide 31: Key components
	Slide 32: Robot Exclusion Standard
	Slide 33: Robot Exclusion Standard
	Slide 34: SHOULD-Have Features
	Slide 35: SHOULD-Have Features
	Slide 36: Anatomy of a Large-Scale Crawler
	Slide 37: The DNS Handler
	Slide 38: The Duplicate URI Checker
	Slide 39: The Duplicate URI Checker
	Slide 40: The Duplicate URI Checker
	Slide 41: The Duplicate URI Checker
	Slide 42: The Duplicate URI Checker
	Slide 43: The Duplicate URI Checker
	Slide 44: The Duplicate Content Checker
	Slide 45: The Duplicate Content Checker
	Slide 46: The Duplicate Content Checker
	Slide 47: The Duplicate Content Checker
	Slide 48: The Duplicate Content Checker
	Slide 49: The Duplicate Content Checker
	Slide 50: The Duplicate Content Checker
	Slide 51: The Duplicate Content Checker
	Slide 52: The Duplicate Content Checker
	Slide 53: The Duplicate Content Checker
	Slide 54: The Duplicate Content Checker
	Slide 55: The Duplicate Content Checker
	Slide 56: The Duplicate Content Checker
	Slide 57: The Duplicate Content Checker
	Slide 58: The Duplicate Content Checker
	Slide 59: The Duplicate Content Checker
	Slide 60: The Duplicate Content Checker
	Slide 61: The Duplicate Content Checker
	Slide 62: The Duplicate Content Checker
	Slide 63: The Duplicate Content Checker
	Slide 64: Focused Crawling
	Slide 65: Focused Crawling
	Slide 66: Next Lecture

