

ScenAIR20250 – Results if the Impact-Uncertainty-Survey

Prof. Dr. Gerhard Glatzel, Stefanie Ollenburg, Marius Land,

Minh-Hieu Pham, Justus Schulze

Content

Preamble	p. 3
System Image with Key Factors	p. 4
Procedure of Impact-Uncertainty Survey	p. 5
Surveys' Framework	p. 7
Survey Demographic Overview	p. 8
Impact-Uncertainty Matrix	p. 9
Ranking of the 25 Factors	p. 36
Evaluation of ATS Transformation	p. 37
Result Evaluation and next steps	p. 39

Preamble

Dear SE²A cluster- and research partners,

Thank you all who participated in the Impact-Uncertainty surveys we conducted for the project ICA A1.1 ScenAIR 2050 of the SE²A excellence cluster.

The following documentation outlines the main results of the surveys to assess Key Factors for building explorative future scenarios regarding the air transport system by 2050.

The objective of the project ScenAIR2050 is to develop qualitative scenarios for the future of the air transport system (ATS) in 2050. The scenarios aim to provide a multi-criteria decision support for evaluating and optimizing future technologies developed within the SE²A cluster, as well as creating participatory synergies among the cluster members.

The main research question revolves around what possible and plausible developments of a sustainable and energy efficient ATS until the year 2050 should be considered, taking into account not only technological advances but also socio-economic developments.

System Image with Key Factors

für DESIGN

FORSCHUNG

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

Procedure of Impact-Uncertainty Survey 1/2

5

In a STEEP (PESTE) analysis of the air transport system (ATS) the drivers were sought after. Considering the results from previous projects (Mozuni et al 2019), having an ongoing process of literature research and knowledge exchange with research partners, over 90 factors were identified that also describe the system's boundaries (p. 4).

In order to investigate alternative trajectories in the form of scenarios, in addition to forecastable drivers such as climate change or GDP development, drivers are considered with significant impacts and less predictability. Thereby, offering at least two to four divergent projections.

In a scenario process, these form the key factors and should not exceed the number of 15 to 20. Thus, in the ScenAIR process the number of factors needed to be reduced. This was done with further desk-research and a software-based accumulation process resulting in 69 factors. In the continuous process, to identify the key factors, an Impact-Uncertainty Analysis was planned. Often it is a team effort of experts of the research field and non-experts. The factors are placed on a matrix, where the X-axis indicates the uncertainty of the expected development of a factor and the Y-axis its impact on the system (p. 10). Based on these assessments, the definite key factors exhibit a high impact and a high uncertainty (upper right corner of the matrix)

Procedure of Impact-Uncertainty Survey 2/2

6

In ScenAIR, we wanted to obtain a greater amount of expert knowledge than would have been possible in a workshop. Therefore, similar to a Delphi survey, we decided to conduct two rounds of Impact-Uncertainty-Analysis surveys and invited experts from the SE²A cluster and external experts from the field of aviation.

For a first Impact-Uncertainty Survey in January 2023 the PhD-candidates of the SE²A cluster were asked to participate (n= 13). They were asked to assess the impact and uncertainty of the 69 STEEP-factors (ordinal scale of 1 to 3). These findings served as the basis for optimising the Impact-Uncertainty Survey.

The final set of factors was a fusion of the abovementioned 69 STEEP factors and resulted in 25 defined factors. This time, 35 experts followed our invitation and gave us the needed insight to evaluate the key-factors that will become the framework for the explorative future scenarios.

This document contains the result of this expert survey, which identified eight definitive and twelve optional key factors, of which fifteen key factors were extracted (p. 4 and further information on p.39).

Surveys' Framework

7

The survey was setup to be an asynchronized Impact-Uncertainty Analysis where experts in the field of aviation from the SE²A excellence cluster as well as professionals with interest and expertise in the field of aviation were invited via email.

- Participants: SE²A cluster partners and external Experts n=35
- Setup: LimeSurvey licensed for TU Braunschweig.

Foundation: 25 defined driving factors

- Assessment on ordinal scale of 1 (lowest) to 5 (highest).
 - 1. Estimation of the impact of the factor on the system's development
 - 2. Estimation of the uncertainty of a factor's development
- Ranking according to impact to find 5 main factors
- Demographic question included, discipline, professional status

Prior to this a pilot Impact-Uncertainty Survey was held in Dec 2022 to Jan 2023

- 69 Factors based on a STEEP Analysis
- Participants: SE²A excellence cluster PhD candidates n = 13

Survey Demographic Overview

Impact-Uncertainty Survey 2 | May to June 2023 | n = 35

FORSCHUNG

Hochschule für Bildende Künste Bra

Impact-Uncertainty Matrix

9

Socio-cultural

- Socio-Political Dynamics
- Mobility Patterns [change of location incl. virtual & In-Person1
- Societal Values and Education
- Trust in the Safety of Technology
- Rich-Poor Gap
- Flight Experience
- Demographic Development

Ecological

- Total Emission of Greenhouse Gas
- Availability of REE as Resources for Aviation Technologies
- Availability of Natural Resources for Europe
- Environmental Conditions and Inhabitability

Political

- Taxation Rates and Policies on Energy in the EU related to pricing
- Role of Regional Airports also through Policies
- Policies and Subsidization for **Diversified Transport** Infrastructure
- Global Political Order

- Technological Advances in the Energy Sector
- Advancement in Aviation
- Certification of Aviation
- Airport Service Experience and Infrastructure
- Diffusion of e-Mobility
- Air Traffic Management [ATM], inlcuding Uncrewed Aerial System [UAS] Advanced Air Mobility [AAM]
- Air Traffic Demand [in conjunction with mobility options and work models]
- Dominant Economic System
- **Aviation Companies**
- Economic Power Distribution

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunsch

Socio-Political Dynamics

Personal awareness and building of civic movements to act on climate change, as well as climate denial and conspiracies (Terrorism, Social Unrest, Revolutions, mass movements)

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

10

für DESIGN

FORSCHUNG

Mobility Patterns

Mobility patterns influenced by work modes, leisure behaviour, and the general social situation

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

11

INSTITUT

FORSCHUNG

Societal Values and Education

Impact

(1)

(2)

(3)

(4)

(5)

4/n

14/n

8/n

Rating

low

high

medium

Social behaviours, lifestyles and attitudes of social groups in connection with individual value systems and educational attainment

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

3,63

n=35

12

3/n

7/n

13/n

6/n

6/n

Uncertainty

(1)

(2)

(3)

(4) (5)

low

high

medium

-

Rating

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

2,14

n=35

Trust in the Safety of Technology

General trust in technology and infrastructure around aviation

Rich-Poor Gap

Distribution of financial means in Europe [a] Globally [b]

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

FORSCHUNG

Flight Experience

On-board flight experience (mobility on board, internet, comfort, noise, etc.)

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Demographic Development

Age distribution with Europe: Population growth in relationship to birth/death rate and migration

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

SE²A

für DESIGN

FORSCHUNG

Braunschweig University of Art

Hochschule für Bildende Künste Braunschweig

Technological Advances in the Energy Sector

Depending on power storage solutions for aviation, the innovations producing sustainable aviation fuels and the effect of advancements in propulsion technologies on the energy mix for aviation

Braunschweig University of Art Hochschule für Bildende Künste Braunschwei

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Advancement in Aviation Design

Penetration rate and acceptance of e-mobility, particularly in Europe's air transport sector

FORSCHUNG

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

Certification of Aviation Technology

Certification of aviation technologies with regard to safety regulations and measures

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Airport Service Experience and Infrastructure

Airport service experience for both passengers and cargo along with supporting Infrastructure

FORSCHUNG

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

Diffusion of e-Mobility Technology

Impact

(1)

(2)

(3)

(4)

(5)

Rating

low

high

medium

Penetration rate and acceptance of e-mobility, particularly in Europe's air transport sector

3,40

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Air Traffic Management

Computational development and international cooperation for efficient and secure Air Traffic Management (ATM), including Uncrewed Aerial System (UAS) and Advanced Air Mobility (AAM)

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

für DESIGN

Air Traffic Demand (ATD)

In conjunction mobility options and work models. The demand for air travel in response to the primacy of labour models, modes of business communication and the options available for inter-modular travel

INSTITUT für DESIGN

FORSCHUNG

Dominant Economic System

Prevailing economic logic and resulting economic system (liberal capitalism, social market economy, socialist market economy, etc.)

24

INSTITUT für DESIGN

FORSCHUNG

Structure and Position of Aviation Companies

Market division and dynamics (incumbents/start-ups) and political influence (Lobbyism) of aviation companies (manufacturers, airlines) in the EU (i.e. the European market)

25

FORSCHUNG

Hochschule für Bildende Künste Braunschweie

Economic Power Distribution and Trade

Economic position and power of individual states based on trade agreements and the potency of both their exports and imports

SE²A

26

INSTITUT für DESIGN

FORSCHUNG

Environmental Conditions and Inhabitability

Impact of climate change on air transport and living conditions. This includes the measure to restrict areas that will be prohibited for habitation, as well as no-fly zones

27

INSTITUT für design

FORSCHUNG

Total Emission of Greenhouse Gas

Projected total emissions of Greenhouse Gas in relation to the manageability/mitigation of their consequence

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Availability of REE as Resources for Aviation Technologies

The availability of rare earth elements (REE) for the European market depending on the demand for these elements for the optimisation of aviation technologies such as propulsion

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Availability of Natural Resources for Europe

Ability to produce and/or import natural resources (Water, fertile Land, Gas, Minerals, Wood, Sand, etc.)

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Global Political Order

Development of public policies for subsidization and regulation of inter-modular (diversified) transportation structure, in conjunction with environmental protection laws

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Policies and Subsidization for Diversified Transport Infrastructure

Development of public policies for subsidization and regulation of inter-modular (diversified) transportation structure, in conjunction with environmental protection laws

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Taxation Rates and Policies on Energy in the EU related to pricing

Policies to regulate the taxation of aviation fuels in conjunction with the development of energy prices in Europe based on the pricing of electricity, gas and fuels from renewable sources

Braunschweig University of Art Hochschule für Bildende Künste Braunschweig

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Role of Regional Airports also through Policies

Their role within a region's mobility and economic infrastructure supported by policy measures including resident protection

für DESIGN chweig FORSCHUNG

FITUT

Overview of Resulting 8 defined Key Factors

Not considered Factors

SF²

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Ranking of the 25 Factors

Accumulated Ranking through 35 Participants (n=35)

36

Technological Advances in the Energy Sector	Advancement in Aviation Design	Trust in the Safety of Technology		Socio-political Dynamic				Mobility Patterns (Virtual, In-Person, UAS, AAM,)			
		5,52%	5,52%				5,33%	5,33%			
	7,62%	Environmental Conditions &	I Policies and Subsidization for Diversified Transport Infrastructure		es and lization versified port ructure		ation D on Ec ogy Sy		Dominant Economic System		
	Taxation Rates and Policies on Energy in the EU	Inhabitability									
	related to pricing		3,81%			3,43%		3,24%			
15,05% Total Emission of Greenhouse Gas		4.95%	Global Politico Order	Soc Valu Edu		etal es and cation	Rich-Poor Gap		Flight Experience		
	7,24%	Availability	Availability			_	1,71%		1,52%		
	Air Traffic Demand (ATD) in conjunction mobility options and work models	of Natural Resources	2,86%	,	2,29%		Demograph Developme				
		for Europe	Availal Rare E	oility of arth	Diffusion of e-Mobility Technology		1,33%	Troffic			-
			Elemer	nts as es for			Economic Power		,1 4 %	∽ ∟ ∢ 1,14%	-
			Aviation Te	chnologies			Distribution (& Trade)				
9,71%	5,52%	4,19%	2,48%		2,29	%	1,33%				

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023

Braunschweig University of Art Hochschule für Bildende Künste Braunschwei

Evaluation of ATS Transformation 1/2

37

How high is your expectation that the air transport system in Europe will reach the goal of "net zero" by 2050?

Survey no. 1 – Estimation through 13 Participants (n=13)

23% of the participants have a high expectation towards the "net zero" target by 2050. However about **54%** of all participants have given a lower rating.

The average rating for the achievement of the "net zero" target by 2050 is **38%**.

Evaluation of ATS Transformation 2/2

38

By what percentage do you estimate that the air transport system in Europe will achieve the "net zero" target by 2050?

Survey no. 2 – Estimation through 35 Participants (n=35)

23% of the participants have a high expectation towards the "net zero" target by 2050. However about **54%** of all participants have given a lower rating.

The average rating for the achievement of the "net zero" target by 2050 is **38%**.

Result Evaluation and next steps

39

The survey results were 8 defined and 12 optional key factors. All can be understood as active drivers impacting the ATS's future development but less predictable to allow for two to four divergent projections.

As mentioned, the participants were mainly engineers from the SE2A excellence cluster, which may have led to the high emphasis on technological factors when asked to rank (p. 36). The ScenAIR team additionally conducted an active/passive mapping to explore its perspective on the 25 factors. Taking the above into account combined with the objective of the ScenAIR project focussing on users and socio-economic factors, the final number of key factors extracted is now 15 (p. 4). Those, will be the foundation of the explorative scenario work.

In two online expert-workshops the results of the survey were used to develop first projections (qualitative descriptions of the key factors' possible developments). This was done for seven of the key factors, for the remaining the projections are being developed to build a morphological box. In a next step a consistency analysis is conducted to assess the congruence of projections with each other. The values are needed to perform a conclusive morphological analysis. Those calculation will be done via a scenariosoftware to receive distinct (raw) scenarios (expected results end of 2023).

Thanks for your help in building sustainable futures!

If you have questions, please contact the ScenAIR2050 HBK Braunschweig team at: <u>se2a-scenair.idf@hbk-bs.de</u>

SE²A

40

HBK Braunschweig | Institute for Design Research | ICA A1.1 ScenAIR 2050 August 2023