

Herzlich Willkommen

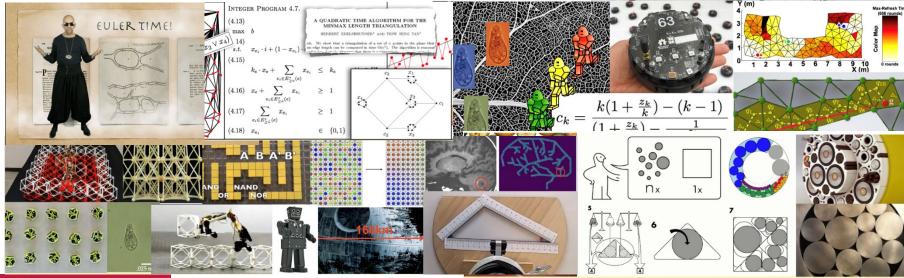
Informatik an der TU Braunschweig

Prof. Dr.-Ing. Christian Dietrich, stellv. Studiendekan Informatik

Die Informatik-Institute stellen sich vor...

Algorithmik

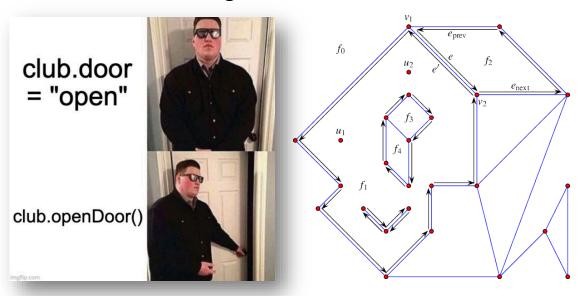
...in Theorie


- Netzwerkalgorithmen
- Algorithmische Geometrie
- Optimierungsmethoden
- Online-Algorithmen
- Approximationsalgorithmen
- Verteilte Algorithmen
- Quantum Computing

...und Praxis

- Algorithm Engineering
- Roboternavigation
- Fahrzeug- und Satellitenschwärme
- Packalgorithmen
- Programmierbare Materie
- Klimawandel

Lehrkraft



Pflichtveranstaltungen

- Programmieren 1
- Theoretische Informatik 2

Wahlpflicht

- Einführung in algorithmische Geometrie
- Einführung in parallele und verteilte Algorithmen
- Parametrisierte Algorithmen

Arne Schmidt

Lehrkraft des Departments Informatik

Connected and Mobile Systems

Lehre

Pflichtmodule

Computernetze 1

Wahlpflichtmodule

- Vorlesungen
- Labore
- Forschungskurse

Studienrichtung (Master)*

Networked Systems

Forschung

Drahtlose Sensornetze / Internet-of-Things

- Smart Farming
- Industrielle Sensornetze
- Resiliente Netze

Fahrzeugkommunikation

- V2X-Kommunikation
- Kooperative Wahrnehmung
- Security

Lars Wolf & Team

Reliable Systemsoftware

Lehre

Pflichtmodule

Betriebssysteme

Wahlpflicht im Bachelor

- Programmiersprachen und Übersetzer
- Seminare, etc.

Wahlpflicht im Master

- Betriebssystembau 1/2
- Seminare, etc.

Forschung

Betriebssysteme für datenintensive Systeme

- Disruptive Hauptspeicher-Technologien
- Cloud-Betriebssysteme

Adaptive / Resiliente Software

- Software Updates
- Heterogene Architekturen
- Fehlerinjektionen

Computergraphik

Schnelle und realistische Bilderzeugung

- Raytracing, OpenGL
- Special Effects, VR
- 3D Video

M. Magnor

Messen und Modellieren

- Bildbasierte Modellierung
- komplexe natürliche Phänomene

Wahrnehmen und Verstehen

- EEG, Eye Tracker
- Bildinterpolation
- Ästhetik, Emotionen

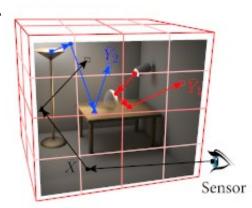
Computer Vision

Algorithmen & Datenstrukturen für Computer Vision & Graphics:

- Bild- & Videoverarbeitung
- Monte-Carlo Rendering
- Beschleunigungsdatenstrukturen
- Renderingalgorithmen

Visual Analytics:

- Informationsvisualisierung (graphischer Daten)
- Effiziente Interaktion
- Immersive Visualization (AR/VR)
- Immersive Learning Environments



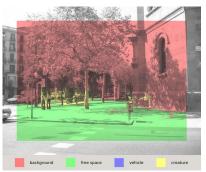
Lehre BA:

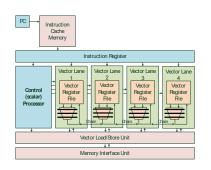
- Programmieren 2
- Teamprojekt / SEP
- Praktika / Projektarbeiten
- Seminare
- BA

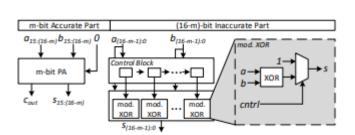
Lehre MA:

- Digitale Bildverarbeitung
- Echtzeitcomputergraphik
- Seminare
- Projektarbeiten
- MA

M. Eisemann


Entwurf Integrierter Systeme




Methoden und Verfahren für den Entwurf und die Programmierung von eingebetteten Systemen

- Algorithmen und Hardware/Software Architekturen der Signalverarbeitung
 - z.B. Fahrerassistenzsysteme, Medizinelektronik, Robotik,...
- Applikationsspezifische Instruktionssatzprozessoren (ASIP)
 - z.B. High-Performance, Fehlertoleranz, Low-Power, ...
- Adaptive Rechner und Reconfigurable Computing (FPGA)
- Dedizierte Computer-Arithmetik
- Entwurf Integrierter Systeme (Chip-Design)

Informationssysteme

Big Data Analysis & KI

Große Datenmengen auswerten und damit Wissen erzeugen

Information Retrieval & semantische Web Suche Informationen Struktur geben

Knowledge Graphs & Graph DBs

Wissen effizient nutzen und verwalten

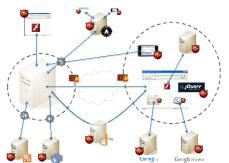
Digitale Bibliotheken

Dokumente verstehen, um Zusammenhänge zu erkennen

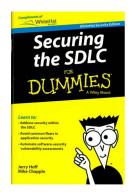
Wolf-Tilo Balke

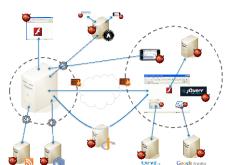
Artificial Artificial Intelligence

Watson



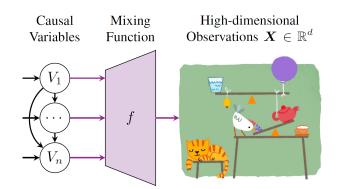
Anwendungssicherheit




Themengebiete

- Sicheres Software Design
- Aufdeckung von Schwachstellen in Software
- Evaluierung von neuen Angriffen und Verwundbarkeitsklassen
- Sicherheit von Web Technologien

M. Johns

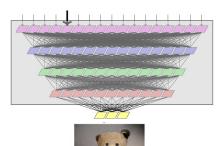


Artificial Intelligence

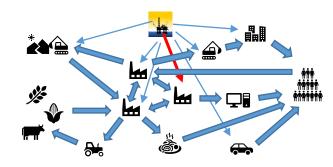
Theory:

- Causal machine learning
- Science-informed AI models
- Generative models
- Robust/interpretable Al

Applications: Complex systems


- Data and resource efficient AI
- Earth Science
- Reliable engineering
- Sustainability

Teaching BSc.:


- Principles of Machine Learning
- Seminars
- Teamprojects / SEPs
- Practicals
- Thesis

Teaching MSc.:

- ML for Data Science
- Representation Learning
- Seminars
- Thesis

M. Besserve

Institut für Robotik und Prozessinformatik

research fields: robot learning, human/machine-machine interaction, optimization-based control, biomorphic & tube robots

J. Steil, leaves 01.10.25

implemented by:

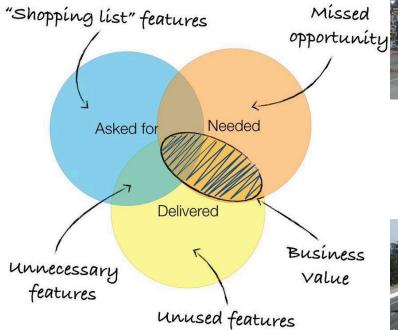
movement primitives - redundant kinematics - impedance control - neural, statistical & deep learning - robot software engineering

applied in:

assistive systems - teaching and learning architectures - user studies - digital society

Lehre & Vertiefungsfach Robotik (Master, im WS 2024/25, SS 2025, all in English):

- WS 2024/25: Robotics 1, Robotics 3, Robot Control & Optimization, Seminar, Projects
- SS 2025: Robotics 2, Medical Robotics, Introduction to Machine Learning, Seminar, Praktikum



Softwaretechnik und Fahrzeuginformatik

Theoretische Informatik

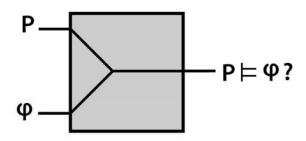
Lehre

Bachelor

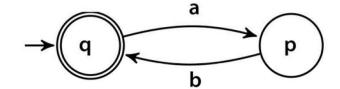
Logik

Theoretische Informatik 1

Theoretische Informatik 2


Master

Algebraische Automatentheorie Algorithmische Automatentheorie Komplexitätstheorie Nebenläufigkeitstheorie Programmanalyse Semantik


Spiele mit perfekter Information

Forschung

Verifikation & Synthese

Automatentheorie

Prof. Dr. Roland Meyer

https://tcs.cs.tu-bs.de

Peter L. Reichertz Institut für Medizinische Informatik

REICHERTZ INSTITUT FÜR MEDIZINISCHE **INFORMATIK**

PLRI = Interdisziplinäres Institut (www.plri.de)
TU Braunschweig & Medizinische Hochschule Hannover (MHH)

Interdisziplinäre Gesundheitsversorgung von morgen

- Forschung: MHH, Klinikum BS, PTB, NFF
 Wirtschaft: Nibelungen, Medizinproduktehersteller, VW
- Politik: Stadt BS, Landesregierung, Bundesregierung
 Gesellschaft: WHO, IMIA, EFMI

Forschung

- Mobile Diagnostik, kontinuierliches Monitoring
- Informationsaustausch in der frühen Rettungskette
- ISAN: International Standard Accident Number

- Lehrveranstaltungen Bachelor (u.a.)
 Einführung in die Medizinische Informatik
 - Medizinische Informationssysteme A
 - Teamprojekt
 - Biomedizinische Signal- und Bilderzeugung

Lehrveranstaltungen Master (u.a.)

- Medizinische Informationssysteme B
- Assistierende Gesundheitstechnologien
- Medizinische Signal- und Bildanalyse

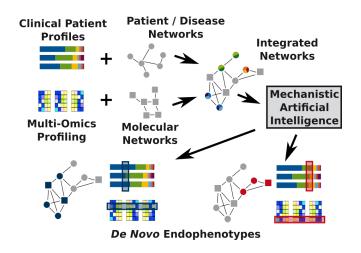
T. Deserno (Dr. Leonie Heisig)

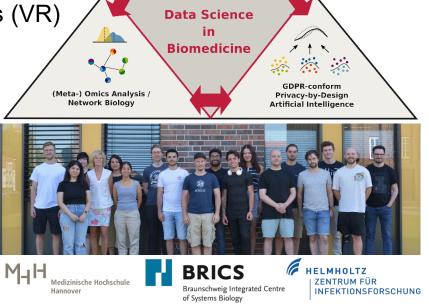
Medizinische Hochschule

Data Science in Biomedicine

Teil des PLRI, interdisziplinäre Anbindung an FK2, MHH, BRICS, HZI

Methoden der Data Science entwickeln und anwenden um die (molekularen) Grundlagen von Krankheiten zu Verstehen.


Maschinelles Lernen / KI


Graphentheorie

Immersive Analytics (VR)

Biostatistik

Science of Science

Bioinformatics

Vielen Dank für Ihre Aufmerksamkeit ©

